INFLUENCIA DE UN SISTEMA FOTOVOLTAICO EN LA HUELLA DE CARBONO DIMENSIONADO POR TELEDETECCIÓN EN UNA UNIVERSIDAD EN MOCHE-2023

por Tanta Castro María Fernanda

Fecha de entrega: 19-jul-2023 12:01p.m. (UTC-0500)

Identificador de la entrega: 2133632401

Nombre del archivo: TESIS_-_2023.docx (8.88M)

Total de palabras: 19659 Total de caracteres: 105433

UNIVERSIDAD CATÓLICA DE TRUJILLO BENEDICTO XVI

FACULTAD DE INGENIERÍA Y ARQUITECTURA

PROGRAMA DE ESTUDIOS DE INGENIERÍA AMBIENTAL

INFLUENCIA DE UN SISTEMA FOTOVOLTAICO EN LA HUELLA DE CARBONO DIMENSIONADO POR TELEDETECCIÓN EN UNA UNIVERSIDAD EN MOCHE-2023

TESIS PARA OBTENER EL TÍTULO PROFESIONAL EN INGENIERÍA AMBIENTAL

AUTOR

Bach. María Fernanda Tanta Castro

ASESOR

Mg. Fernando Arístides Saldaña Milla

LINEA DE INVESTIGACIÓN

Tecnología e innovación ambiental

3 TRUJILLO-PERÚ

INFORME DE ORIGINALIDAD

INFLUENCIA DE UN SISTEMA FOTOVOLTAICO EN LA HUELLA DE

INFORM	TE DE ORIGINALIDAD	
1 INDIC	3% 13% 3% 6% TRABAJOS ESTUDIANTE	
FUENTI	ES PRIMARIAS	
1	repositorio.uct.edu.pe Fuente de Internet	2%
2	hdl.handle.net Fuente de Internet	2%
3	Submitted to Universidad Catolica de Trujillo Trabajo del estudiante	1 %
4	Submitted to Universidad Europea de Madrid Trabajo del estudiante	<1%
5	idoc.pub Fuente de Internet	<1%
6	www.sfe-solar.com Fuente de Internet	<1%
7	www.slideshare.net Fuente de Internet	<1%
8	repositorio.upa.edu.pe	<1%

AUTORIDADES UNIVERSITARIAS

Mons. Dr. Héctor Miguel Cabrejos Vidarte, O.F.M.

Arzobispo Metropolitano de Trujillo Fundador y Gran Canciller de la Universidad Católica Trujillo Benedicto XVI

Mons. Dr. Luis Miranda Díaz

Rector de la Universidad Católica de Trujillo Benedicto XVI

Dra. Mariana Silva Balarezo

Vicerrectora Académica

Dra. Ena Cecilia Obando Peralta

Vicerrectora de Investigación

Mg. Breitner Díaz Rodríguez

Decano de la Facultad de Ingeniería y Arquitectura

Mons. Ricardo Exequiel Angulo Bazauri

Gerente de Desarrollo Institucional

Dra. Teresa Reátegui Marín

Secretario General

CONFORMIDAD DEL ASESOR

Yo Mg.Ing. Fernando Arístides Saldaña Milla con DNI N° 18135414, como asesor del trabajo de investigación "INFLUENCIA DE UN SISTEMA FOTOVOLTAICO EN LA HUELLA DE CARBONO DIMENSIONADO POR TELEDETECCIÓN EN UNA UNIVERSIDAD EN MOCHE-2023" desarrollada por la bachiller Maria Fernanda Tanta Castro con DNI N° 73447072 respectivamente, egresada del Programa Profesional de Ingeniería Ambiental.

Considero que dicho trabajo de titulación reúne los requisitos tanto técnicos como científicos y corresponden con las normas establecidas en el reglamento de titulación de la Universidad Católica de Trujillo Benedicto XVI y en normativa para la presentación de trabajos de titulación de la Facultad de ingeniería y Arquitectura.

Por tanto, autorizo la presentación de este informe ante el organismo pertinente para que sea sometido a evaluación por la comisión de la clasificación designado por el Decano de la Facultad de Ingeniería y Arquitectura.

Mg. Ing. Fernando Arístides Saldaña Milla

ASESOR

DEDICATORIAS

A DIOS

Por haberme brindado sabiduría y salud, permitiéndome poder culminar una de mis metas más anheladas.

A MI MADRE QUERIDA

Bertha, por su amor, paciencia, consejos y apoyo incondicional brindado durante todo mi crecimiento personal y académico. Tu bendición diaria a forjado en mi la persona que hoy por hoy soy, por ello todos mis logros y hazañas tienen tu nombre.

A MI TENAZ PADRE

Miguel, por su perseverancia y tenacidad que han inculcado en mi la fortaleza y vigor para siempre culminar mis proyectos de vida.

A MI HERMANO

Diego, quien desde su llegada ha sido parte de mi inspiración para crecer hacia la excelencia, impulsándome a seguir adelante.

> La Autora. Maria Fernanda Tanta Castro

AGRADECIMIENTOS

Este proyecto de investigación marca el fin de mi etapa universitaria como estudiante de pre grado en la carrera de Ingeniería Ambiental, por ello me es grato mencionar que durante el proceso tuve familiares, docentes y amigos que me brindaron su apoyo incondicional tanto en los malos como buenos momentos, permitiendo así culminar de manera satisfactoria con esta etapa universitaria, a todos ellos mis más sinceros agradecimientos.

De manera especial me gustaría agradecer a:

Mis padres, Bertha y Miguel, quienes han velado siempre por mi educación y bienestar, demostrándome con su ejemplo, que todo es posible en esta vida, siempre que haya esfuerzo, disciplina y perseverancia.

Mi tía Juany y prima Marilyn, mujeres luchadoras y aguerridas, quienes, con su infinito cariño y corazón noble, lograron alcanzar el mío, sintiendo su apoyo cada vez que lo necesité.

Mis abuelos, Aurelia y Dionicio, por sus cálidos consejos, risas y cariño incondicional. A mi mamita Nena, quien me bendice desde el cielo y me demostró en vida los valores del servicio y la solidaridad, tus consejos siempre irán conmigo en mi corazón.

Mi tutor Mg. Ing. Fernando Arístides Saldaña Milla, quien con sus consejos de padre fue mi guía durante estos cinco años, forjándome como persona y profesional; agradecerle por sus conocimientos brindados, que despertaron en mi la pasión por la investigación y los proyectos de aspecto social – ambiental. Gracias por confiar en mí.

La Universidad Católica de Trujillo Benedicto XVI, mi querida casa de estudios, por permitirme lograr una de mis metas más anheladas y convertirme en una profesional de éxito. También quiero agradecer de manera muy especial a mis docentes de carrera Mg. Ing. Janet Gonzales Valdivia, Mg. Ing. Luis Mantilla Santillán y Dra. Lola Rojas quienes me brindaron apoyo y una formación académica integral de calidad.

La Autora. Maria Fernanda Tanta Castro

DECLARATORIA DE AUTENTICIDAD

Yo, María Fernanda Tanta Castro con DNI 73447072, egresada del Programa

de Estudios de Pregrado de Ingeniería Ambiental de la Universidad Católica de Trujillo

Benedicto XVI, doy fe que he seguido rigurosamente los procedimientos académicos y

administrativos emanados por la Facultad de Ingeniería y Arquitectura, para la elaboración

y sustentación del informe de tesis titulado:

"INFLUENCIA DE UN SISTEMA FOTOVOLTAICO EN LA HUELLA DE

CARBONO DIMENSIONADO POR TELEDETECCION EN UNA UNIVERSIDAD

EN MOCHE-2023", el cual consta de un total de 107 páginas, en las que se incluye 23

tablas y 68 figuras, más un total de 5 páginas en anexos.

Dejo constancia de la originalidad y autenticidad de la mencionada investigación y

declaro bajo juramento en razón a los requerimientos éticos, que el contenido de dicho

documento corresponde a mi autoría respecto a redacción, organización, metodología y

diagramación. Asimismo, garantizo que los fundamentos teóricos están respaldados por el

referencial bibliográfico, asumiendo un mínimo porcentaje de omisión involuntaria respecto

al tratamiento de cita de autores, lo cual es de mi entera responsabilidad.

Se declara también que el porcentaje de similitud o coincidencia es de 13%, el cual

es aceptado por la Universidad Católica de Trujillo.

La autora

María Fernanda Tanta Castro

DNI: 73447072

ا ∨ii

ÍNDICE

RESUMEN	xiv
ABSTRACT	xv
I. INTRODUCCIÓN	16
II. METODOLOGÍA	44
2.1. Enfoque	44
2.2. Diseño de Investigación	44
2.3. Población, muestra y muestreo	45
2.4. Técnica e instrumentos de recojo de datos	45
2.5. Técnica de procesamiento y análisis de información	49
2.6. Aspectos éticos en investigación	55
III. RESULTADOS	56
3.1. Consumo Energético	56
3.2. Huella de Carbono por electricidad	66
3.3. Dimensionamiento del Sistema Fotovoltaico	72
3.4. Presupuesto de Instalación del Sistema Fotovoltaico	85
IV. DISCUSIÓN	90
V. CONCLUSIONES	92
VI. RECOMENDACIONES	94
VII. REFERENCIAS BIBLIOGRÁFICAS	95
LANGUAGO CONTRACTOR CO	

ÍNDICE DE TABLAS

Tabla 1. Factores de emisión de GEI para consumo de energía eléctrica del SEIN 45
Tabla 2. División de ambientes para calculo energético 50
Tabla 3. Factor de Simultaneidad por ambiente y uso diario
Tabla 4. Plantilla para el consumo energético por pabellón
Tabla 5. Plantilla para el cálculo de la Huella de Carbono por electricidad por pabellón
Tabla 6. Consumo Energético en la UCT56
Tabla 7. Consumo Energético en el Pabellón Benedicto XVI
Tabla 8. Consumo Energético en el Pabellón Santo Toribio de Mogrovejo 60
Tabla 9. Huella de carbono por Consumo Energético en la Universidad Católica de
Trujillo
Tabla 10. Parámetros solares promedios para el dimensionamiento del sistema
fotovoltaico durante los años 2016-2021
Tabla 11. Características del Sistema Fotovoltaico dimensionado para el Pabellón
Benedicto XVI
Tabla 12. Resultados principales del SF dimensionado para el Pabellón Benedicto XVI
Tabla 13. Balance y resultados finales del sistema fotovoltaico dimensionado para el
Pabellón Benedicto XVI
Tabla 14. Características del Sistema Fotovoltaico dimensionado para el Pabellón Santo
Toribio de Mogrovejo
Tabla 15. Resultados principales del SF dimensionado para el Pabellón Santo Toribio de
Mogrovejo
Tabla 16. Balance y resultados finales del sistema fotovoltaico dimensionado para el
Pabellón Santo Toribio de Mogrovejo
Tabla 17. Costo de Instalación del Sistema Fotovoltaico en el Pabellón Benedicto XVI
Tabla 18. Costo de Operación del Sistema Fotovoltaico en el Pabellón Benedicto XVI
Tabla 19. Resumen financiero y Retorno de la inversión del sistema
Tabla 20. Costo de Instalación del Sistema Fotovoltaico en el Pabellón Santo Toribio de
Mogroveio

Tabla 21. Costo de Operación del Sistema Fotovoltaico en el Pabellón Santo Toribio de
Mogrovejo
Tabla 22. Resumen financiero y Retorno de la inversión del sistema fotovoltaico en el
Pabellón Santo Toribio de Mogrovejo

Figura 1. Resumen huella de carbono por alcances a través de la cadena de valor 24
Figura 2. Esquema del funcionamiento de la energía solar
Figura 3. Equema de un SFRC
Figura 4. Funcionamiento y componentes de una instalación fotovoltaica conectada a red
31
Figura 5. Partes de un Panel Solar
Figura 6. (a) Inversor Solar, (b) Contador Bidireccional
Figura 7. Tipos de Radiación
Figura 8. Irradiancia a lo largo de un día
Figura 9. Temperatura de Operación del Mód Fotovoltaico
Figura 10. Ángulos que intervienen en el cálculo de la irradiación total sobre una
superficie receptora23
Figura 11. Variación del ángulo de inclinación óptimo y de la irradiación media diaria
mensual recibida por el panel solar
Figura 12. Componentes de un sistema de Teledetección
Figura 13. Software Photovoltaic Geographical Information System (PVGIS)
Figura 14. Datos de irradiancia promedios diarios en PVGIS
Figura 15. Esquema metodológico
Figura 16. Emplo de características eléctricas de una computadora LG
Figura 17. Base de Datos de Radiación Solar Mundial
Figura 18. NSRDB: Base de datos nacional de radiación solar
Figura 19. Sistema Fotovoltaico instalado en la UCT para recopilación de datos 47
Figura 20. Panel Solar utilizado en el dimensionamiento de los sistemas fotovoltaicos de
la UCT
Figura 21. Inversor usado en el dimensionamiento de los SF
Figura 22. Ventana de procesamiento de datos para la orientación en el software PV syst
7.3
Figura 23. Ventana de procesamiento de datos el dimensionamiento del sistema
fotovoltaico en el software PV syst 7.3
Figura 24. Plantilla de Excel donde se procesaron los datos del SF
Figura 25. Ventana de los costos de instalación en el software PV syst 7.3
Figura 26. Ventana del resumen de los parámetros financieros en el software PV syst 7.3
Figura 27. Ventana del resumen de los resultados financieros finales en el software
PV syst 7.3
Figura 28. Área de mapeo de Universidad Católica de Trujillo
Figura 29. Consumo Energético del Pabellón Benedicto XVI en un año
Figura 30. Porcentaje según elemento del área Iluminación – Benedicto XVI 58
Figura 31. Porcentaje según elemento del área Salones de clase – Benedicto XVI 58
Figura 32. Consumo energético según elemento del área Oficinas Administrativas -
Benedicto XVI

Figura 33. Potencia Requerida por piso del Pabellón Principal Benedicto XVI 60 Figura 34. Consumo Energético del Pabellón Santo Toribio de Mogrovejo en un año61 Figura 35. Porcentaje según elemento del área Iluminación – Santo Toribio de Mogrovejo
61
Figura 36 . Porcentaje según elemento del área Salones de clase – Santo Toribio de Mogrovejo
Figura 37. Consumo energético según elemento del área Laboratorios – Santo Toribio de Mogrovejo
Figura 38. Porcentaje según elemento del área Oficinas administrativas – Santo Toribio de Mogrovejo
Figura 39. Porcentaje según elemento del área Comedor – Santo Toribio de Mogrovejo
Figura 40. Potencia Requerida por piso del Pabellón Santo Toribio de Mogrovejo . 65 Figura 41. Dióxido de Carbono emitido por consumo energético en los pabellones de la Universidad Católica de Trujillo al año
figura 42. Metano y Dióxido Nitroso emitido por consumo energético en los pabellones de la Universidad Católica de Trujillo al año
Figura 43. Dióxido de Carbono emitido por ambiente en el Pabellón Benedicto XVI . 67 Figura 44. Metano y Dióxido Nitroso emitido por ambiente en el Pabellón Benedicto XVI
Figura 45. Porcentaje por ambiente de T CO ₂ emitido al año en el Pabellón Benedicto XVI
Figura 46. Dióxido de Carbono emitido por ambiente en el Pabellón Santo Toribio de Mogrovejo
Figura 47. Metano y Dióxido Nitroso emitido por ambiente en el Pabellón Santo Toribio de Mogrovejo
Figura 48. Porcentaje por ambiente de T CO ₂ emitido al año en el Pabellón Santo Toribio de Mogrovejo
Figura 49. Balance de Carbono por año en el Pabellón Benedicto XVI
Figura 51. Energía consumida del sistema fotovoltaico instalado en un período de 30 días
Figura 52. Irradiancia media diaria en la Universidad Católica de Trujillo
Figura 54. Energía diaria a la salida del sistema – Pabellón Benedicto XVI
Figura 56. Modelo 3D del SF dimensionado en el Pabellón Benedicto XVI - Hora: 6:00 am
Figura 57. Modelo 3D del SF dimensionado en el Pabellón Benedicto XVI - Hora: 1:00 pm

Figura 58. Modelo 3D del SF dimensionado en el Pabellón Benedicto XVI - Hora: 6:00
pm
Figura 59. Energía incidente de referencia en el plano colector – Pabellón Santo Toribio
de Mogrovejo81
Figura 60. Energía diaria a la salida del sistema – Pabellón Santo Toribio de Mogrovejo
Figura 61. Temperatura del conjunto vs irradiancia efectiva - Pabellón Santo Toribio de
Mogrovejo
Figura 62. Modelo 3D del SF dimensionado en el Pabellón Santo Toribio de Mogrovejo
- Hora: 7:00 am
Figura 63. Modelo 3D del SF dimensionado en el Pabellón Santo Toribio de Mogrovejo
- Hora: 1:00 pm
Figura 64. Modelo 3D del SF dimensionado en el Pabellón Santo Toribio de Mogrovejo
- Hora: 6:00 pm
Figura 65. Flujo de caja anual del SF dimensionado en el Pabellón Benedicto XVI 86
Figura 66. Flujo de caja acumulativo del SF dimensionado en el Pabellón Benedicto XVI
Figura 67. Flujo de caja anual (KPEN) del SF dimensionado en el Pabellón Santo Toribio
de Mogrovejo
Figura 68. Flujo de caja acumulativo (KPEN) del SF dimensionado en el Pabellón Santo
Toribio de Mogrovejo

RESUMEN

El consumo energético en una Institución de Nivel Superior, es un gran problema ambiental a nivel mundial, por los gases de efecto invernadero que se emiten de manera indirecta a la atmósfera, siendo el principal el CO2, proveniente de los combustibles fósiles que se usa para la producción de la electricidad. Actualmente, nos encontramos en una transición energética y las instituciones como las universidades, buscan la manera de utilizar energías limpias para satisfacer su demanda energética. Por ello, se evaluó la influencia de un sistema fotovoltaico en la huella de carbono (HC) dimensionado mediante teledetección solar en la Universidad Católica de Trujillo. Para ello se tuvo en cuenta el consumo máximo energético observado y detallado de la universidad, la huella de carbono por equivalente eléctrico, los parámetros solares y geoespaciales, así como también el costo de instalación y operación de los sistemas dimensionados. Se usó el factor de emisión oficial CO₂ – MINAM, que es de 0.1733 Kg CO₂/KWh y también se utilizó la técnica de la teledetección solar para una mayor robustez, exactitud y rapidez del dimensionamiento de los sistemas fotovoltaicos. Al término de la investigación, se obtuvo dos sistemas fotovoltaicos, el primero compuesto de 240 módulos de 600 W y el segundo compuesto de 330 módulos de 605 W; estos sistemas permiten ahorrar un total de 3 862.8 TCO₂ a lo largo de la vida útil de sistema fotovoltaico y logra satisfacer un consumo energético de 809 MWh al año.

Palabras Clave: Huella de Carbono; Sistema Fotovoltaico; Teledetección Solar; Energía renovable; Rentabilidad

ABSTRACT

Energy consumption in a Higher-Level Institution, is a large global level environmental problem, by greenhouse gases that are indirectly emitted in the atmosphere, being the main the CO₂, from fossil fuels used for the production of electricity. Currently, we are in an energy transition and institutions such as universities are looking for ways to use clean energy to meet their energy demand. Therefore, the influence of a photovoltaic system on the carbon footprint (CF) sized by solar remote sensing at the Catholic University of Trujillo was evaluated. For this purpose, the observed and detailed maximum energy consumption of the university, the carbon footprint per electrical equivalent, the solar and geospatial parameters, as well as the installation and operation cost of the sized systems were taken into account. The official CO2 - MINAM emission factor was used, which is 0.1733 Kg CO₂/KWh, and the solar remote sensing technique was also used for greater robustness, accuracy and speed in the sizing of the photovoltaic systems. At the end of the research, two photovoltaic systems were obtained, the first one composed of 240 modules of 600 W and the second one composed of 330 modules of 605 W; these systems allow saving a total of 3 862.8 TCO2 throughout the useful life of the photovoltaic system and satisfy an energy consumption of 809 MWh per year.

Key words: Carbon Footprint; Photovoltaic System; Solar Remote Sensing; Renewable energy; Profitability.

I. INTRODUCCIÓN

Desde el siglo XIX, las actividades económicas que implican un uso elevado de la energía eléctrica y que generan impacto en la calidad del medio ambiente son un tema de controversia a nivel mundial, por la contaminación indirecta de dióxido de carbono que se emite a la atmósfera, debido al uso masivo de combustibles fósiles (carbón, petróleo, gasolina, etc.) que trajo la llegada de la revolución industrial y el término de la segunda guerra mundial; donde el uso del petróleo era fuente principal para la generación de electricidad debido a su bajo costo (BBVA Communications, 2022).

Alrededor del 85 al 93% de la energía a nivel mundial proviene de los combustibles fósiles, concretamente de productos petrolíferos, gas natural y carbón (Sharma et al., 2021), los cuales emiten gases de efecto invernadero (GEI) durante su elaboración, producción y consumo, siendo el dióxido de carbono (CO₂) el gas que encabeza la lista de los principales contaminantes atmosféricos debido a la gran cantidad que se emite de este en la generación de electricidad (Kanat et al., 2021; Rasheed et al., 2022). Con el constante crecimiento demográfico, cada vez es más necesario el uso de la electricidad, por lo que el empleo de los combustibles fósiles es cada vez mayor, comprendiendo el 80% de la demanda actual de la energía primaria a nivel mundial (BBVA Communications, 2022). El crecimiento económico, energético y la calidad del medio ambiente están asociados y se relacionan entre sí, lo que pone a prueba la hipótesis de Malthus "limits to growth", donde sostiene que los recursos naturales como el petróleo, gas natural, minerales, etc. son finitos y el constante uso de estos asociado con el crecimiento exponencial de la población podría desequilibrar las condiciones básicas para la vida en la biosfera a nivel mundial (Gomez Baggethun, 2021).

En la actualidad la iluminación y el uso de la electricidad siguen siendo un problema fundamental de vital importancia tanto para el medio ambiente como para la sociedad. En 2013 el Programa de las Naciones Unidas para el Medio Ambiente (PNUMA) informó que de toda la electricidad utilizada a nivel mundial un 20% corresponden a la iluminación, lo que da como resultado que un 6% de las emisiones de dióxido de carbono (CO2) a nivel mundial se debe al uso de la electricidad para iluminación y se estima que para el año 2060 el consumo de iluminación aumentara en un 60%, lo que significa que las

emisiones de CO₂ que están relacionadas con la energía también aumentarán, contribuyendo con el calentamiento de la tierra y cambios climáticos en el futuro (Hong & Rahmat, 2022).

Aunque la globalización ha permitido la extensión y distribución de las energía limpias, su uso se emplea mayormente en grandes industrias, por lo que el sector que más aprovecha las energías limpias es el industrial, el cual con el empleo o uso de la energía fotovoltaica busca reducir las toneladas de dióxido de carbono que emiten cada año (Hamieh et al., 2022). Por otro lado, existen otros sectores como el educativo que también posee una marcada huella de carbono por tres razones fundamentales: el uso de transporte, consumo eléctrico y la generación de residuos; sin embargo, la electricidad es el mayor contribuyente de las emisiones de dióxido de carbono con un 59% (Haseeb et al., 2022) debido al elevado consumo de electricidad que existe por el uso constante de equipos electrónicos, enchufes o sistemas de iluminación (Hermosilla, 2014).

El sector educativo a nivel mundial también se está integrando en la transición energética, por ello las instituciones educativas están elaborando y publicando informes de sostenibilidad donde dan a conocer su impacto negativo y positivo que tienen con el medio ambiente (Filimonau et al., 2021; University of Cambridge, 2022), brindando un dato importante que es la estimación de dióxido de carbono que emiten a la atmósfera. En el caso de Reino Unido, las emisiones de las universidades entre 2021 y 2022 oscilaron entre 0.33 y 65 070 kilotoneladas de CO₂eq , donde se estima que un 40% de las emisiones corresponden al consumo energético oscilando entre 0.0089 y 27 911.03 kilotoneladas de CO₂eq por institución (HESA, 2023).

Las universidades reconocen cada vez más la necesidad de mitigar y reducir sus emisiones de carbono y enfrentar los problemas con acciones que involucren la sostenibilidad, buscando convertirse en instituciones "*Net Zero*" (Ma et al., 2023; Rocha et al., 2023); sin embargo, es necesario contar con estrategias y acciones tangibles en un corto y largo plazo; es por ello que, para lograr una mejor delimitación de las fuentes indirectas y directas de emisiones de carbono se tiene una metodología de categorización, teniendo en cuenta el tipo de industria en donde se realizará la estimación de las emisiones de carbono (Climate Partner ID, 2019). La norma de protocolo de gases de efecto invernadero (GHGP) clasifica las emisiones de carbono en tres alcances (Climate Partner ID, 2019), y son : Alcance 1 (fuentes propias o controladas por la empresa); Alcance 2 (energía consumida por la empresa) y Alcance 3 (transporte e insumos consumidos) (Clabeaux et al., 2020; Cooper

et al., 2023). En el caso de las industrias, la huella de carbono es más relevante en el alcance 1, debido a la utilización de calderas y hornos propios controlados, representado un 70 a 90% del total de emisiones GEI (Rocha et al., 2023); por otro lado, en las instituciones educativas, especialmente en las universidades extranjeras, entre un 40 a 80% de las emisiones de carbono corresponden al alcance 1 y 2, esto debido al uso de biomasa, gas natural y motores (alcance 1) para la generación de electricidad, siendo un 80% de estos correspondientes a la huella de carbono por consumo de energía eléctrica (Gu et al., 2019; Robinson et al., 2015), lo que significa que la electricidad juega un papel importante en la mitigación y disminución de la huella de carbono en el sector educativo, en algunas universidades el alcance 3 es el más representativo con un 50 a 60% de la huella de carbono debido a los viajes escolares, transporte, alimentación, etc. (Cooper et al., 2023; Kiehle et al., 2023). En consecuencia, la huella de carbono de las universidades depende del lugar en donde se encuentre ubicado geográficamente la universidad, así como el país de origen, sus políticas y gestión universitaria; dando énfasis y resaltando uno de los alcances en particular, como es el caso de las universidades en Perú, donde la mayoría de universidades usa la electricidad proporcionada por la red; en consecuencia, su huella de carbono es más relevante en el alcance 2 y 3, representando un 80% del total de emisiones GEI (Clabeaux et al., 2020), siendo entre un 40 a 60% correspondiente al alcance 2.

En Perú son pocas las universidades que poseen tecnologías para reducir la huella de carbono por consumo eléctrico (Barreda & Polo, n.d.), pese a que la emisión de dióxido de carbono por electricidad es elevada en las Instituciones de Estudios Superiores, debido a los diversos equipos que se usan, la iluminación constante y las conferencias o actividades que se puedan llevar a cabo en la casa de estudio que impliquen un uso de la electricidad, como es el caso de la Universidad del Pacifico, que tuvo un consumo energético de 3 866 377 kW/h en el año 2016 (Shwalb Helguero et al., 2016); además, también hay universidades que poseen una notable huella de carbono (HC) en el alcance 2, como son: la Universidad San Ignacio de Loyola, con una huella de carbono de 404.50 TCO_{2e} representando un 34.9% del total de la HC (Universidad San Ignacio de Loyola, 2021); la Universidad Nacional Agraria la Molina, con una huella de carbono de 443 TCO_{2e} representando un 39.5% del total de la HC (Universidad Nacional Agraria La Molina, 2020); la Universidad Científica del Sur, con una huella de 338.45 TCO_{2e} representando un 5.2% del total de la HC (Universidad Científica del Sur, 2019) y la Universidad Tecnológica del Perú, con una huella de 2 573.83 TCO_{2e} representando un 98% del total de la HC (Universidad Tecnologica del

Perú, 2022) Por ello, es necesario que se implementen medidas, estrategias y acciones sostenibles en las instituciones de educación superior en el Perú; y aunque algunas universidades ya están implementando algunas medidas como el uso de paneles fotovoltaicos, jardines verticales, etc. para disminuir la HC de alcance 2, la gran mayoría de universidades todavía no han aplicado ninguna medida de mitigación de CO₂.

Existen muchas medidas ambientales para mitigar los Gases de Efecto Invernadero (GEI) por consumo de energía eléctrica en las instituciones educativas, una de ellas y la más usada hoy en día es el uso de paneles solares, los cuales son una tecnología emergente limpia; debido a que el principal recurso de donde se obtiene es el sol. El dimensionamiento de un sistema fotovoltaico en una universidad tiene muchas ventajas y beneficios; en lo social, permite estimar la reducción de gases de efecto invernadero emitidos a la atmósfera lo que influye de manera directa en la mejora de la calidad del aire (Yue et al., 2021), siendo útil para la población y comunidad universitaria, ya que no solo contribuye con su salud, sino también aporta a frenar el cambio climático a nivel mundial; en lo ambiental, permite obtener datos detallados del ahorro de energía y reducción de los gases de efecto invernadero (NOx, SO₂, PM, CO₂ y COV) (Gbadamosi et al., 2022; Hasapis et al., 2017) que trae consigo el uso de la energía fotovoltaica, contribuyendo así con el objetivo de desarrollo sostenible número 7 "affordable and non-polluting energy"; en lo tecnológico, la adquisición de datos a través de sensores remotos empleando técnicas de teledetección solar puede facilitar el mapeo, estudio y determinación de parámetros de los componentes fotovoltaicos (Zarco et al., 1996); facilitando la adquisición, análisis y procesamiento de datos para el dimensionamiento de un sistema fotovoltaico y en lo económico, contribuye con el crecimiento y ahorro económico de la industria, empresa o institución que lo implementa (Gbadamosi et al., 2022; Khan et al., 2022; Mughal et al., 2022), debido a que no se tendrá que pagar por la energía consumida en el lugar, a pesar de que la inversión es significativa, con el uso de la teledetección solar se puede obtener datos robustos y concisos para el dimensionamiento exacto de un sistema fotovoltaico según su ubicación geográfica, lo que permite el ahorro de costos en la instalación.

Observada la problemática que genera el consumo de energía eléctrica en instituciones de educación superior a nivel mundial y nacional, se generó la siguiente pregunta ¿En qué medida el sistema fotovoltaico dimensionado por teledetección influenciará en la huella de carbono de la Universidad Católica de Trujillo?

Luego de la problemática y justificación mencionada, para respaldar y mayor robustez de la investigación presentada se buscaron investigaciones similares, donde se menciona el uso o dimensionamiento de sistemas fotovoltaicos; así como también la mitigación de la huella de carbono, como la que se llevó a cabo en la Universidad de Jordania, donde se propuso como objetivo principal lograr la independencia energética al 100%; motivada por el elevado consumo eléctrico que tiene la universidad y el elevado costo de la electricidad por la escasez de combustibles fósiles en el país. Para lograr su objetivo propuesto, dimensionaron y evaluaron el uso de sistemas fotovoltaicos de dos tipos; obteniendo como resultado que el sistema fotovoltaico de eje fijo es la mejor opción, ya que logra satisfacer la demanda anual energética que requiere la universidad que es de 26 030 MWh y ocupa un área de 150 000 m². Por otro lado, en Jordania, todas las instituciones educativas pagan \$ 0.37 por KWh, generando un alto gasto por consumo de energía eléctrica, sin embargo según el estudio realizado en la universidad, si se implementa el sistema fotovoltaico de eje fijo, se obtiene un TIR del 32% y el periodo de recuperación de la inversión es de 3 años (Ayadi et al., 2018).

De igual manera, la Facultad de Ingeniería de la Universidad de Mu'tah estudió las maneras para reducir su demanda energética a través del diseño de un sistema fotovoltaico utilizando datos geográficos y parámetros como: La temperatura, número de paneles solares, eficiencia y nivel de irradiación del lugar; determinaron que la Facultad de Ingeniería consume 96 MWh anualmente, por lo que es necesario que se instale un sistema fotovoltaico conectado a la red con una capacidad de 56.7 KW para que la producción de electricidad a la red sea de 97.02 MWh y se pueda satisfacer la demanda energética de la facultad, por otro lado si se implementa este sistema fotovoltaico tendrá un costo de \$ 117 000, el cual se logra recuperar en 5 años y 5 meses, el sistema fotovoltaico empleado permite mitigar ochenta y cinco toneladas de gases de efecto invernadero al año (Al-Najideen & Alrwashdeh, 2017).

Por otro lado, una investigación realizada en la provincia de Jiangsu en china, a través del uso de teledetección solar, permitió evaluar el desempeño de un sistema fotovoltaico instalado en viviendas, donde obtuvieron como resultados que la provincia tiene una capacidad instalada de 290.66 TWh; esto significa que con la implementación de paneles

solares en los tejados de las viviendas se puede llegar a reducir 200 787.9 TCO₂ al año (Jiang et al., 2022).

Además, la Universidad de Petarmina en Indonesia, tuvo como principal objetivo en su investigación la medición de la huella de carbono teniendo en cuenta tres áreas importantes y son: Transporte, electricidad y generación de residuos. Para el cálculo del dióxido de carbono emitido de fuentes de electricidad se basaron en la unidad de medida kilovatio hora (KWh); para esto obtuvieron datos de electricidad proporcionados por la Dirección de Instalaciones, Infraestructura y Tecnología de la Información de la universidad; donde después de aplicar la fórmula de kilovatio por el factor de CO₂ (0.741 Kg CO₂/KWh) obtuvieron que el total de emisiones de CO₂ por electricidad es de aproximadamente 1 247.8 MTCO₂ al año, por lo que se llegó a la conclusión que el sector eléctrico es el que más contribuye a la emisión de dióxido de carbono en una universidad con el 92.3% (Ridhosari & Rahman, 2020).

Un estudio donde compararon un sistema térmico fotovoltaico de módulos de silicio monocristalino y multicristalino, concluyó que el uso de módulos fotovoltaicos ayuda a mitigar grandes cantidades de dióxido de carbono generado por el consumo energético, sin embargo, el uso de paneles monocristalinos permite una mayor mitigación en comparación al multicristalino, mitigando 18.09 a 17.26 T CO₂ a lo largo de su vida útil (Rao & Sekhar, 2022).

El sistema de Monitoreo y vigilancia de las Fuerzas Armadas de Ecuador (ESPE) diseñó un módulo de energía solar para contribuir con la transición energética y mitigar el CO2 emitido por el uso de electricidad, para poder diseñar el sistema fotovoltaico calcularon la energía requerida para el funcionamiento optimo del módulo de vigilancia, obteniendo un consumo total de 100 W, por lo que concluyeron que solo sería necesario dos paneles fotovoltaico policristalinos y baterías ALPHACELL de 100 Ah (Parreño et al., 2020) Por otra parte, la Universidad Nacional de Costa Rica (UNA) desarrolló una investigación para la cuantificación y actualización de su huella de carbono en los años 2012 a 2014, donde aplicó la metodología recomendada por el Instituto Meteorológico Nacional (IMN), como resultados obtuvieron que la huella de carbono de la UNA fue de 9 802 T/año CO2 durante los años de 2012 a 2014, teniendo en cuenta que el factor electricidad fue uno de los que más aportó con un 20% luego del uso de combustible fósil (petróleo) y viajes aéreos, así mismolos investigadores llegaron a la conclusión que existen otros factores que han aumentado la

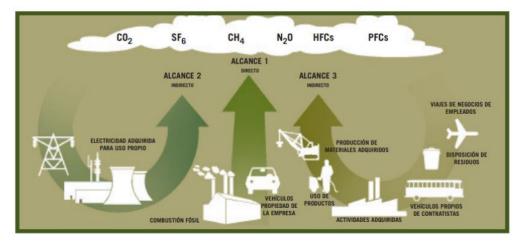
huella de carbono en la universidad y son: El crecimiento de la población institucional, la construcción de nueva infraestructura, aspectos que se relacionan directamente con el aumento del consumo de energía eléctrica (Chavarría-Solera et al., 2016).

También, en Colombia, el Anaira Hostel realizó una investigación sobre el conteo de su HC y la elaboración de una propuesta para la implementación de un sistema fotovoltaico que permita la mitigación de GEI por consumo de energía eléctrica. En primer lugar, se calculó la HC por electricidad, obteniendo que fue de 0.90979 T/CO_{2eq} y el consumo de energía eléctrica en KWh, que fue en promedio 740.750 KWh. Los investigadores evaluaron seis diferentes propuestas, de las cuales llegaron a la conclusión que la mejor opción es el uso de paneles policristalinos de 320 W, 37 V y 833.280 \$, ya que logra satisfacer la demanda energética requerida por el hotel y mitigar la huella de carbono, recuperando la inversión en un promedio de 5 años con un TIR del 16% (Rodríguez y Gutiérrez, 2017).

De manera similar se realizó una investigación en la Universidad de Cuenca, donde se buscó reducir la huella a través de la implementación de un sistema fotovoltaico de carbono en el Campus de Postgrado Estancia Luis Cordero El Grande y el Centro de Investigación, Innovación y Transferencia de Tecnología (CIITT), donde obtuvieron como resultado que la huella de carbono fue de 51.16 TCO₂ y 10.05 TCO₂ en el año 2019. Además, concluyeron que un panel tipo EG-350M-72 con una potencia máxima de 350W, proporciona 38.70 KWh/año compensando un total de 0.047 T CO₂, por lo que para compensar toda la HC en un 100% en el edificio de postgrado se necesitarían 5 570 paneles solares teniendo en cuenta que su consumo energético es de 144 158 KWh y para compensar la huella del CIITT se necesitarían 1 137 paneles solares para un consumo energético de 45 494.04 KWh (Ulloa & Samaniego, 2021).

En nuestro país, también existen antecedentes de investigaciones o acciones sobre la implementación o diseño de un sistema fotovoltaico en empresas o instituciones educativas que ayudan a reducir la cantidad de CO₂ emitido a la atmósfera por el consumo de energía eléctrica; como es el caso de ENGINE, la cual logro en 2020 la "neutralidad de carbono" registrada en la plataforma Huella de Carbono Perú del Ministerio del Ambiente (MINAM) debido a la instalación de 100 paneles fotovoltaicos en su Centro Corporativo Principal ubicado en San Isidro-Lima (ENGIE, 2021). Así mismo, algunas tesis realizadas en Universidades Peruanas, sostienen que el dimensionamiento y análisis de un sistema

fotovoltaico para la disminución del consumo eléctrico, contribuye no solo con el recurso eléctrico del lugar en donde se implementa, si no también, ayuda a disminuir los GEI emitidos por electricidad y al ser paneles certificados ambientalmente, su impacto en el medio ambiente es de cero, por otro lado también ayuda a visualizar la parte económica de su implementación y ver en cuanto tiempo se logra recuperar lo invertido, permitiendo escoger la alternativa más económicamente rentable para la institución (Merino et al., 2017; Ordóñez Rosales, 2020; Suxe Fernández, 2022), un claro ejemplo es la investigación que se realizó en la Universidad Nacional Jorge Basadre Grohmann en Tacna, donde el 73.8.% entre estudiantes, administrativos y docentes aseguraron que la mejor energía limpia para implementar en el campus seria la solar, debido a que logra disminuir en un 70% el uso de los combustibles fósiles (Linares-Vizcarra et al., 2022). Por otro lado, existen universidades que ya han implementado sistemas fotovoltaicos (SF) de manera parcial en sus centro de estudio, y son: Universidad Nacional de San Agustín de Arequipa, la cual implemento un SF que genera el 40% de energía para el funcionamiento de su Escuela Profesional de Ingeniería Ambiental este SF está compuesto de 184 paneles solares, un inversor de carga y baterías de litio para el almacenamiento de energía permitiendo reducir el consumo eléctrico y las emisiones de CO₂ (Universidad Nacional de San Agustín de Arequipa, 2023); la Universidad de Lima (ULI), que implemento dos sistemas fotovoltaicos, el primero conformado por 154 paneles fotovoltaicos en Centro de Bienestar Universitario de la Universidad y el segundo con 263 paneles ubicados en el Centro de Innovación Tecnológica, este gran paso dado por la Universidad de Lima, le ha permitido contribuir con la transición energética y reducir más de 85 T CO₂ al año, gracias a la generación de 76.250 KWh al año que proporciona el primer sistema fotovoltaico y 140.510 KWh del segundo (Universidad de Lima, 2021) y la Universidad Continental, que implemento en su campus de Huancayo sistemas fotovoltaicos de la siguiente manera, coloco 72 paneles en sus pabellones G y H, luego, colocaron 54 paneles en el pabellón G y 18 en el H, logrando una reducción de 12 000 KW de consumo, y permitiéndole a la universidad recibir la certificación EKOenergy, garantizando que los paneles comprados por la universidad son respetuosos con el medio ambiente y cumplen los criterios de sostenibilidad lo que permite aplacar el CO2 en los pabellones que se implementaron en su totalidad (Universidad Continental, 2023).


Por lo anterior mencionado, está claro que la emisión de Gases de Efecto Invernadero a la atmósfera (NO_X, SO₂, PM, CO₂ y COV) por el consumo eléctrico lo genera la contaminación eléctrica, que es una contaminación secundaria, ya que esta no causa

contaminación directamente; sin embargo, el proceso para obtener electricidad sí; siendo así el sector energético uno de los que más aporta a la emisión de gases de efecto invernadero con un 42 %, contribuyendo con el calentamiento global y la disminución de la calidad del aire (Yue et al., 2021).

Para cuantificar la cantidad de GEI que produce una institución por consumo de energía eléctrica, tenemos a la Huella de Carbono, que es un instrumento de medición ambiental reconocido por el Estado Peruano, involucrando instituciones públicas y privadas (Ministerio del Ambiente [MINAM], 2018), el cual permite obtener y representar el volumen total de GEI enviados a la atmósfera producto de actividades económicas o actividades humanas cotidianas que involucran consumos directos e indirectos de materiales y energía; el resultado obtenido se expresa en CO₂ equivalente (Ridhosari & Rahman, 2020). El dióxido de carbono equivalente eléctrico (CO_{eq}) es una medida que se utiliza para indicar la generación de gases de efecto invernadero emitidos por el consumo de energía eléctrica en determinado espacio geográfico (Ridhosari & Rahman, 2020).

Figura 1.

Resumen huella de carbono por alcances a través de la cadena de valor

Nota. Tomado de Protocolo de Gases de Efecto Invernadero. https://ghgprotocol.org/sites/default/files/standards/protocolo_spanish.pdf

Nota: En la Figura se puede apreciar los Gases de Efecto Invernadero (GEI) que emite una empresa o institución durante su cadena de valor, clasificada en diferentes alcances, el alcance 2 corresponde a los GEI emitidos por electricidad.

La fórmula para calcular el dióxido de carbono emitido por el consumo de energía eléctrica en la Universidad Católica de Trujillo se observa en la Ecuación 1. (Chavarría-Solera et al., 2016):

$$T CO_{2e} = kWh * F_{kWh} / 1000 Kg/T$$
 (1)

Donde:

T CO_{2e}: Toneladas de dióxido de carbono equivalente

KWh: Kilowatts hora de energía eléctrica consumida

 F_{KWh} : Factor de emisión oficial del IMN

1000 kg/T: Factor de kilogramos a toneladas

Por otro lado, se usó el instrumento Balance de Carbono, que posibilita estimar el ahorro de CO₂ previsto con la instalación del sistema fotovoltaico. Esta herramienta se centra en las Emisiones de Ciclo de Vida (ECV) que simboliza el impacto ambiental que genera la cantidad de emisiones de CO₂ vinculadas a un determinado producto o servicio a lo largo de su vida útil. Estos valores incluyen el ciclo de vida total de un componente, incluido el funcionamiento, la producción, eliminación, mantenimiento, etc. Si la energía eléctrica generada por la instalación fotovoltaica sustituye la misma cantidad de electricidad de la red existente se produce un ahorro de emisiones a la atmosfera. Por tanto, el balance total de carbono de un sistema fotovoltaico es la diferencia entre las emisiones de CO₂ producidas y las emisiones de CO₂ mitigadas, esto depende de cuatro factores principales, que se aprecian en la Ecuación 2.:

Balance de Carbono = E Red x vida del proyecto x LCE Red - Sisema LCE (2)

Donde :

E Red: Energía suministrada a la red eléctrica

LCE Red: Cantidad de emisiones de CO2 por unidad de energía para la electricidad producida por la red

Sistema LCE: Cantidad total de emisiones de CO2 causadas por la intalación y funcionamiento de la instlación fotovoltaica

El cálculo del consumo energético en una institución educativa, es la cantidad total de energía eléctrica que consume y necesita la institución durante un periodo de tiempo para llevar a cabo el correcto funcionamiento de un proceso determinado (iluminación de ambientes, funcionamiento de equipos eléctricos, etc.), se puede calcular el consumo energético de un día, mes o año y su unidad de medida es el kilovatio hora (KWh). El cálculo del consumo energético para un mes se expresa en la Ecuación 3.:

$$Consumo\ energ\'etico = \frac{P_r * T_{ud} * 30\ d\'as}{1000}$$
 (3)

Donde:

 P_r : Potencia requerida (W)

 T_{ud} : Tiempo de uso diario (h)

Así mismo, para poder comprender la fórmula del consumo energético, es necesario conocer algunos parámetros eléctricos, y son:

Voltaje

El voltaje o también conocido como fuerza electromotriz o potencial eléctrico, es una magnitud física expresada en voltios (V) que se define como la diferencia en el nivel de energía de una unidad de cargas entre dos puntos en un circuito (Irwin, 1997), matemáticamente se expresa de la Ecuación 4.(Charles K. & Matthew N., 2013):

$$v_{ab} \triangleq \frac{dw}{dq} \tag{4}$$

Donde:

w: Energía en joules (J)

q: Carga en coulombs (C)

Corriente

La corriente es el cambio de la carga con respecto al tiempo y su unidad básica es el ampere (A) (Irwin, 1997), matemáticamente se expresa en la Ecuación 5.:

$$i(t) = \frac{\frac{79}{dq(t)}}{dt} \quad o \quad q(t) = \int_{-\infty}^{t} i(x)dx \tag{5}$$

Donde:

i: Corriente(A)

q : Carga en coulombs (C)

t: Tiempo(S)

Potencia Eléctrica (PE)

La potencia es definida como la variación respecto del tiempo de absorción de energía, su unidad de medida es el watts (W)(Charles K. & Matthew N., 2013). Es así que, la PE es la variación que indica la cantidad de energía eléctrica absorbida de una fuente a un elemento consumidor por unidad de tiempo (Andrés Blanco, 2019). Matemáticamente se expresa en la Ecuación 6:

$$p \triangleq \frac{dw}{dt} \tag{6}$$

Donde:

p: Potencia (W)

w : Energía (J)

t: Tiempo(s)

La potencia P también se expresa en la siguiente Ecuación 7.,

$$P = vi \tag{7}$$

Donde:

P: Potencia(W)

v: Voltaje(V)

i: Corriente(A)

Haciendo referencia a que es una cantidad que varía con el tiempo, llamándose potencia instantánea.

Potencia Eléctrica Máxima

45

La potencia eléctrica máxima o también conocida como potencia punta, es la cantidad máxima de carga que puede llegar a soportar una institución o empresa durante su uso de manera continua en un momento determinado (Pepeenergy, 2023).

Factor de Simultaneidad

A través de los años la experiencia ha demostrado que el funcionamiento de todas las cargas instaladas en una misma instalación nunca se produce en la práctica, es decir, que siempre existe un cierto grado de diversidad de utilización de un factor (ks)(IEC international Standars, 2016).

Este factor es definido en IEC60050 – *International Electrotechnical Vocabulary*, como:

Factor de Coincidencia: Expresa un valor numérico o en porcentaje, entre la demanda máxima simultanea de un grupo de aparatos eléctricos o de consumidores en un periodo de tiempo determinado y la suma de sus demandas máximas individuales en el mismo periodo. El valor es siempre ≤ 1 y puede expresarse como porcentaje.

Factor de Diversidad: El reciproco del factor de coincidencia. Hace referencia a que siempre será ≥ 1 .

Por otro lado, es claro precisar que la determinación del factor de simultaneidad es responsabilidad del diseñador, ya que su valor usado depende del conocimiento de la instalación en la que se está aplicando.

7 Potencia Eléctrica Requerida

La potencia eléctrica requerida (Pr) es la carga que necesita la instalación o proceso para su correcto funcionamiento durante un determinado periodo de tiempo teniendo en cuenta el factor de simultaneidad. Se expresa en la Ecuación 8:

$$P_r = P * Te * Ks \tag{8}$$

Donde:

P: Potencia(W)

Te: Total de equipos de un mismo elemento

Ks: Factor de simultaneidad

Energía

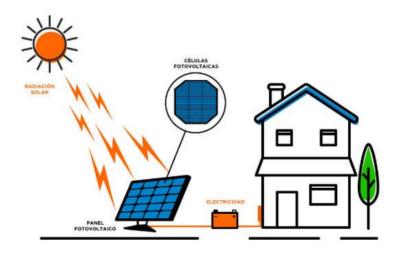
Es la energía consumida en una unidad de tiempo, expresada en la Ecuación 9:

$$E = \frac{P}{t} \tag{9}$$

Donde:

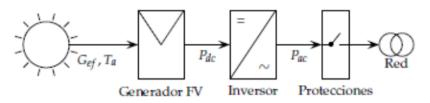
E: Energía eléctrica

P: Potencia(W)


t: Tiempo(s)

Así mismo, es necesario conocer la energía renovable que se utilizó en el presente trabajo de investigación y es la energía solar o energía fotovoltaica (FV) (Ver Figura2), la cual es un tipo de energía renovable que se emplea a nivel mundial para producir energía limpia y sostenible mediante el aprovechamiento de la luz solar (radiación), que destaca

mayormente en países tropicales (Handara et al., 2016). Esta energía renovable se viene empleando a lo largo de los años y actualmente con el avance tecnológico existen materiales semiconductores o dispositivos que aprovechan la radiación solar y generan energía eléctrica (Coruhlu et al., 2022), uno de ellos son los Sistemas Fotovoltaicos Conectados a la Red (SFCR) que es un conjunto de componentes (modulo fotovoltaico, inversor DC/AC, etc.) (Ver Figura 3.) cuya función primordial es generar electricidad en condiciones óptimas a través de la captación de rayos solares para poder ser inyectados en una red eléctrica convencional (Ver Figura 4.)(Perpiñán Lamigueiro, 2020).


Figura 2.

Esquema del funcionamiento de la energía solar

Nota. Tomado de Energía Solar Fotovoltaica ahora disponible en Perú, por Alquimodul, 2017, https://www.alquimodul-peru.com/noticias/energia-solar-fotovoltaica-ahora-disponible-en-peru/.

Figura 3. *Esquema de un SFRC*

Nota. Tomado de Energía Solar Fotovoltaica (p. 65), por Perpiñán L. Oscar, 2020.

Figura 4.

Funcionamiento y componentes de una instalación Fotovoltaica conectada a red

Nota. Tomado de *Configuración de instalaciones solares fotovoltaicas*, por Cantos S. Julián, 316. https://almerichestudio.es/funcionamiento-y-componentes-de-una-instalacion-fotovoltaica-conectada-a-red/

Un módulo fotovoltaico o panel solar está conformado por un conjunto de células fotovoltaicas conectadas entre sí (Ver Figura 5); estas células dependen del efecto fotovoltaico que produce la radiación solar al entrar en contacto con las células, lo que produce un campo eléctrico que es capaz de proporcionar corriente eléctrica; estas células están elaboradas de un material semiconductor que es el silicio y las podemos encontrar en distintos tipos dependiendo de su pureza (Al-Najideen & Alrwashdeh, 2017).

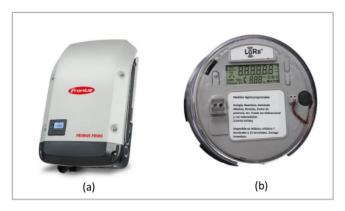
Partes de un Panel Solar

Marco de aluminio
Cristal
Encapsulado
Célula Fotovoltaica
Encapsulado
Célula Fotovoltaica
Encapsulado
Cubierto regitivo (1)
Encapsulado
Cubierto regitivo (2)
Encapsulado
Cubierto Regitivo (3)
Encapsulado
Cubierto Regitivo (3)
Encapsulado
Cubierta Posterior

Cristal
Encapsulado
Cubierto Regitivo (3)
Encapsulado
Cubierto Regitivo (4)
Encapsulado
Cubierto Regitivo (4)
Encapsulado
Cubierto Regitivo (5)
Encapsulado
Cubierto Regitivo (4)
Encapsulado
Cubierto Regitivo (5)
Encapsulado
Encapsulado
Encapsulado
Cubierto Regitivo (5)
Encapsulado
Encapsulado
Encapsulado
Encapsulado
Encapsulado
Cubierto Regitivo (5)
Encapsulado
En

Para hallar la energía generada en KWh por un panel solar, empleamos la Ecuación 10. (Ulloa & Samaniego, 2021):

Energía generada en KWh por un panel =
$$\frac{HRS * EGS}{1000}$$
 (10)


Donde:

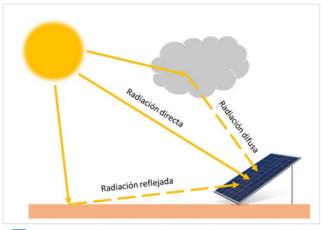
HRS: Horas de radiación solar

EGS: Energía generada por el panel solar en w

Otros dos elementos fundamentales de un sistema fotovoltaico (SF) como se aprecia en la Figura 4. son: El inversor solar (Ver Figura 6.), elemento que convierte la corriente continua proporcionada por los paneles solares en energía alterna, energía preparada para ser consumida por la institución en donde se ha realizado la instalación solar (AutoSolar, 2023); y el contador bidireccional (Ver Figura 6.), su finalidad en el SF es la de registrar la energía eléctrica producida por el SF y contabilizar la electricidad consumida por la red local, este elemento ayuda a determinar de manera exacta cuanto se debe pagar de luz a la empresa prestadora de servicio con base en tu consumo (Autor Solar Inc., 2020).

Figura 6.(a) Inversor Solar, (b) Contador Bidireccional

ttps://www.renova-energia.com/categoria-producto/inversores-conexion-red/ y la figura (b), fue obtenida de Solar Inc., 2020. https://www.energiasolarinc.com/medidor-bidireccional-cfe/


Para el diseño de un sistema fotovoltaico existen algunos parámetros solares que ayudan a un óptimo dimensionamiento del sistema fotovoltaico y son los que se presentan a continuación:

31 Radiación Solar

La radiación solar es la energía que se capta del sol, la cual se desplaza por toda la superficie terrestre a través de ondas electromagnéticas (Jiang et al., 2022). La radiación solar que ingresa a la atmósfera terrestre se divide en tres tipos de radiación (Ver Figura 7.) y estas dependen mucho de la declinación, latitud y longitud del lugar de estudio, así como también del ángulo horario, los tipos de radiación son los siguientes:

- Radiación directa. Es la cantidad de radiación que llega a la superficie terrestre de manera directa, se da mayormente cuando existe un ambiente despejado.
- Radiación difusa. Es la cantidad de radiación que se concentra en un lugar específico gracias a los efectos de dispersión atmosféricos
- Radiación reflejada. Es la radiación incidente que capta determinada superficie, por ejemplo: Un panel solar, gracias al efecto de reflejo que ocasiona los rayos solares al chocar con determinada superficie (suelo u objeto).

Figura 7. *Tipos de Radiación*

ta. Tomado de *Foro Verde*, por Narva Oscar, 2020. https://elforoverde.org/energias-renovables/la-radiacion-solar/

Un panel solar puede llegar a aprovechar los tres tipos de radiación solar, dependiendo de su ubicación y posicionamiento.

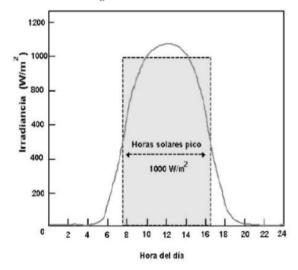
Irradiancia

Es la magnitud que describe la potencia incidente por unidad de superficie de todas las formas de radiación electromagnética en determinada área o superficie (Lira Oliver & Guevara Mon, 2018; Rodriguez Mas et al., 2022). Su unidad se mide en W/m².

Irradiación

La irradiación es una medida de energía por unidad de área producida en un tiempo dado (una hora, un día, un mes o un año)(Pareja Aparicio, 2015). Su unidad de medida es (Wh/m²)

Hora Sola Pico


Se define a las horas de pico solar (HPS) como las horas de irradiación diarias, cuyo valor varía de acuerdo al lugar y mes donde se diseñará el sistema fotovoltaico, variando entre 3 a 7 horas diarias (Pareja Aparicio, 2015). Por otro lado también se tiene en cuenta la superficie con una orientación α y una inclinación β (Rodriguez Mas et al., 2022).

La Ecuación 11. que permite la obtención de la HPS de un día expresada en kWh/m^2 (Rodriguez Mas et al., 2022), es la siguiente:

$$HSP = \frac{H\left(\frac{Kwh}{m^2dia}\right)}{1\ Kw/m^2} = H\tag{11}$$

$$*~1~sol = 1000 \frac{w}{m^2} = 1 K w/m^2$$

Figura 8. *Irradiancia a lo largo de un día*

Nota. Tomado de *Energía Solar Fotovoltaica*, por Pareja A. Miguel, 2015.

Potencia Fotovoltaica Pico Instalada (KWp)

La potencia fotovoltaica pico de una instalación se define en kilovatio pico (kWp) y es la máxima potencia eléctrica que puede suministrar el sistema fotovoltaico en sus óptimas condiciones, teniendo en cuenta factores como la irradiación, la temperatura del módulo, su ángulo de inclinación, y las variaciones climáticas (Ladrón de Guevara, 2018).

Potencia pico (KWp) =
$$\frac{1 \frac{KW}{m^2} * \text{área} * \text{eficiencia}}{100}$$
 (12)

Número de Paneles

Es la cantidad de paneles que necesita la institución o empresa para que su funcionamiento sea optimo. La fórmula para calcular el número de paneles se

aprecia en la Ecuación 13.(Ladrón de Guevara, 2018; Rodríguez & Gutiérrez, 2017):

$$N^{\circ}$$
 de paneles = $\frac{EN}{HSP * Rendimiento de trabajo * KWp}$ (13)

Donde:

EN: Energía necesaria

HSP: Horas del sol promedio

KWp: Potencia pico del módulo

Eficiencia del módulo

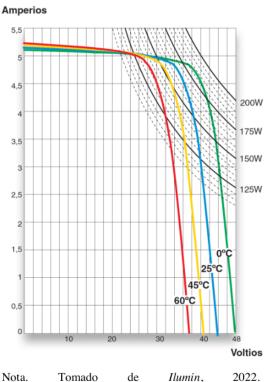
La eficiencia del módulo (η) es el cociente entre la potencia eléctrica producida por el panel solar y la irradiación que incide sobre él (Pareja Aparicio, 2015). Y se expresa en la Ecuación 14:

$$\eta = \frac{P_M}{P_L} = \frac{V_M * I_M}{P_L} \tag{14}$$

Donde:

P_M: Potencia máxima de la celda

P_L: Potencia luminosa recibida por la célula

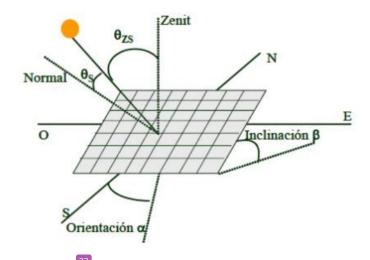

 V_M : Voltaje máximo

 I_M : Corriente máxima

Temperatura

La temperatura ambiente es un factor clave en el óptimo rendimiento de un sistema fotovoltaico, ya que un aumento de la temperatura reduce la tensión del circuito abierto en las células fotovoltaicas originando una disminución en el rendimiento del panel fotovoltaico (Ver Figura 9.) (Perpiñan Lamigueiro, 2020).

Figura 9.Temperatura de Operación del Módulo Fotovoltaico

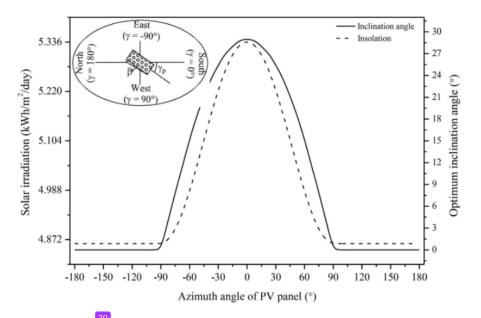

Nota. Tomado de *Ilumin*, 2022 <u>https://ilumin.online/como-calcular-la-temperatura-de-operacion-del-modulo-fotovoltaico/</u>

Angulo de Inclinación

El ángulo de inclinación del panel solar está directamente relacionado con la radiación solar que penetra a la superficie de las células fotovoltaicas, así mismo cuando el panel solar se sitúa perpendicularmente en dirección al sol recibe la máxima radiación por un intervalo de tiempo, considerándose este el ángulo de inclinación óptimo que será 15° respecto al ángulo de latitud (Ver Figura 10.)(Cepeda & Sierra, 2007).

Figura 10.

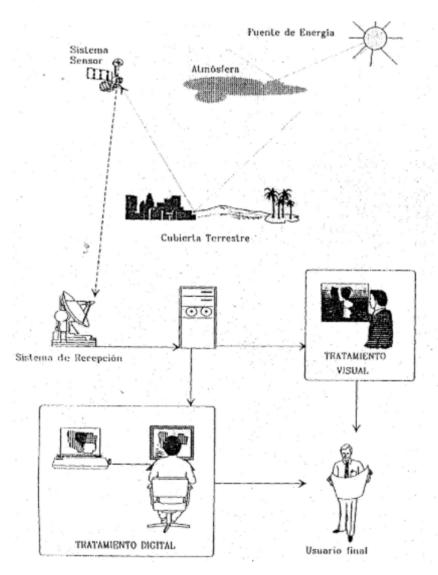
Ángulos que intervienen en el cálculo de la irradiación total sobre una superficie receptora


Nota. Tomado de *Análisis*, modelado y validación de un sistema fotovoltaico para el alumbrado vial de la Avenida De Las Américas (p. 11), por Inguil y Espinoza, 16 2014. https://dspace.ups.edu.ec/bitstream/123456789/6867/1/UPS-CT003533.pdf

Azimut

Es el ángulo que presentan los módulos fotovoltaicos respecto a la dirección sur con la proyección horizontal del sol dirigida hacia el norte, teniendo en cuenta que la orientación con respecto al sur es 0° (Yadav et al., 2020). El azimut es muy importante en el dimensionamiento de un sistema o módulo solar, debido a que dependiendo del ángulo de azimut que se elija se podrá aprovechar al máximo la irradiación solar (Ver Figura 11.). Teniendo en cuenta la gráfica de la Figura 5, se determina que el azimut ideal se encuentra comprendido ente -15° y +15° ya que en estos ángulos se puede obtener una mayor irradiación solar disminuyendo la perdida y aprovechando al máximo los rayos solares.

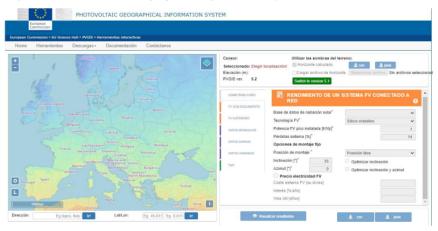
Figura 11.


Variación del ángulo de inclinación óptimo y de la irradiación media diaria mensual recibida por el panel solar

Nota. Tomado de *Optimum azimuth and inclination angle of BIPV panel owing to different factors influencing the shadow of adjacent building* (p. 388), por Yadav et al, 2020. https://doi.org/10.1016/j.renene.2020.08.018

Para obtener datos concisos y fiables, este estudio utilizó la teledetección solar, que permite la adquisición de datos a través de imágenes de la superficie terrestre mediante sensores montados en plataformas espaciales, ya sea por reflexión de la energía solar o a partir de energía artificial (Chuvieco, 1995). Es así que la teledetección solar asegura la adquisición de datos que ayudan al dimensionamiento de un sistema fotovoltaico, como: La radiación solar, nivel de temperatura, número de paneles que se puede usar según la ubicación geográfica y el área disponible, etc. (Al-Najideen y Alrwashdeh, 2017).

Figura 12.Componentes de un Sistema de Teledetección



Nota. Tomado de *Fundamentos de Teledetección Espacia* (p. 26). *l*, por Chuvieco E., 1995

El Photovoltaic Geographical Information System (PVGIS), es una herramienta en línea gratuita desarrollado por el Centro Científico de la Unión Europea (Ver Figura 13). Este software permite determinar la cantidad de energía solar fotovoltaica producida por cualquier sistema fotovoltaico ubicado en cualquier punto de Europa, Asia y algunos lugares de América. Este software, cuenta con una base datos de radiación solar que abarca desde 2005, lo que permite visualizar la evolución y estabilidad a lo largo de los años y realizar cálculos de generación más precisos.

Figura 13.

Software Photovoltaic Geographical Information System (PVGIS)

Nota. Tomado de *Photovoltaic Geographical Information System*, por el centro Informático de la Unión Europea, https://re.jrc.ec.europa.eu/pvg_tools/es/tools.html

Figura 14.

Datos de irradiancia promedios diarios en PVGIS

Nota. Tomado de *Photovoltaic Geographical Information System*, por el centro Informático de la Unión Europea, https://re.jrc.ec.europa.eu/pvg_tools/es/tools.html

Antes de la implementación de un sistema fotovoltaico es necesario evaluar la viabilidad y rentabilidad de la construcción del sistema, para ello, se consideran tres factores clave y son: El valora actual neto (VAR), el periodo de recupero de la inversión (PRI) y la tasa interna de retorno (TIR).

El VAR es una métrica que permite evaluar un proyecto de inversión a largo plazo, por tanto, si el VAR es positivo, quiere decir que la implementación del sistema generará utilidades o beneficios, su fórmula se expresa en la Ecuación 15.

$$VAR = \sum_{t=1}^{n} \frac{R_t}{(1+i)^t}$$
 (15)

Donde:

R_t: Saldo neto (ingresos - gastos)del año t

i: Tasa de descuento que podría obtenerse en inversiones alternativas

Et: Electricidad producida en un año

n: Vida útil del sistema

El TIR se refiere a la tasa de descuento que hace que el valor actual neto de todos los flujos de caja sea igual a cero. En resumen, como se observa en la Ecuación 16. representa el porcentaje de ingresos que se obtiene periódicamente luego de una inversión en un proyecto:

$$TIR = \sum_{t=0}^{n} \frac{F_n}{(1+i)^n} = 0$$
 (16)

Donde:

 F_n : Flujo de caja

I: Valor de la inversión inicial

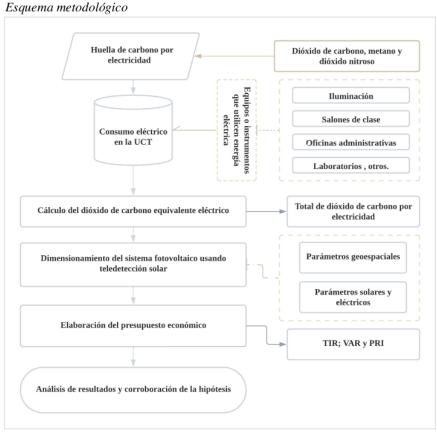
n: Número de periodos

El PRI es el tiempo que demora en recuperar el capital invertido inicialmente una empresa o institución, su fórmula es la división entre la inversión inicial y el flujo de efectivo anual.

La Universidad Católica de Trujillo Benedicto XVI (UCT) es una comunidad académica con más de 3000 miembros, ubicada en el Distrito de Moche en el Departamento de La Libertad, actualmente la universidad no cuenta con un reporte de sostenibilidad, ni con un conteo de la huella de carbono institucional (HCI), sin embargo, se han identificado que las principales actividades que generan GEI, son: Consumo de energía eléctrica, transporte y residuos. La ubicación geográfica de la universidad hace que sea adecuada para aprovechar al máximo la energía solar ya que cuenta con una radiación promedio de 183.5 KWh/m²/mes durante todo el año, por ello el presente trabajo de investigación se centró en el Alcance 2, y se buscó dimensionar un sistema fotovoltaico teniendo en cuenta datos geográficos y parámetros solares obtenidos mediante el software PVGIS para lograr reducir la HC generada por el uso de la electricidad en la comunidad universitaria del Campus en Moche.

Las actividades institucionales académicas y administrativas que se realizan en la Universidad Católica de Trujillo implican un consumo energético, generan emisiones de Gases de Efecto Invernadero de tipo alcance 2 que impactan de manera negativa en el medio ambiente, impacto que ha sido evaluado y cuantificado a través de la identificación de los principales componentes y actividades que demandan un consumo de la energía eléctrica en el campus de la Universidad en Moche. El dimensionamiento de un sistema fotovoltaico por teledetección influenció de manera significativa positiva en la huella de carbono de tipo alcance 2 en la Universidad Católica de Trujillo.

II. METODOLOGÍA


2.1. Enfoque

La investigación realizada tiene un enfoque inductivo-deductivo ya que se centra en la comprobación de una hipótesis basada en premisas generales aceptada por la comunidad científica; además, es una investigación cuantitativa ya que se cuantifico la recopilación y el análisis de datos obtenidos, como: El consumo de energía eléctrica, la huella de carbono, los datos de radiación, etc.

3 2.2. Diseño de Investigación

El diseño metodológico de la investigación es experimental ya que se manipuló la variable independiente que es el sistema fotovoltaico para reducir la HC por electricidad que viene a ser la variable dependiente; la metodología que se empleó se puede apreciar en la Figura 15.

Figura 15.

2.3. Población, muestra y muestreo

Población: Huella de carbono en universidades

Muestra: Huella de carbono en la Universidad Católica de Trujillo

Muestreo: Huella de carbono en la Universidad Católica de Trujillo

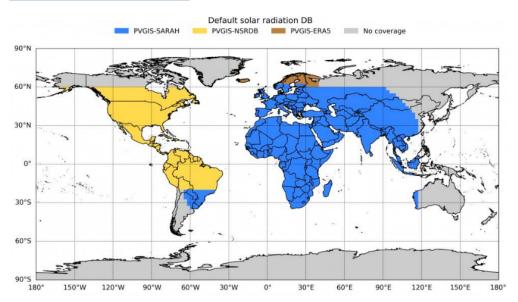
2.4. Técnica e instrumentos de recojo de datos

Se empleo la técnica de observación para determinar la carga eléctrica en cada uno de los pisos de cada pabellón en la universidad, se elaboró un inventario de los elementos que requieren energía eléctrica de acuerdo a sus características de voltaje (V), corriente (A) o potencia (W) según fuera el caso, siendo anotados en un cuaderno de campo.

Figura 16.Ejemplo de características eléctricas de una computadora LG

Para el conteo de la huella de carbono se utilizó el inventario de componentes eléctricos, ya que a partir de ellos se determinó el consumo energético de la universidad, además se utilizaron los Factores de Emisión de GEI para consumo de energía eléctrica del Sistema Eléctrico Interconectado Nacional (SEIN) reconocido por el Ministerio del Ambiente (MINAM) (ver Tabla 1.).

Tabla 1.


19
Factores de emisión de GEI para consumo de energía eléctrica del SEIN

Fuente de emisión	Dióxido <mark>de</mark> Carbono	Metano	Óxido nitroso
	(CO ₂)	(CH4)	(N ₂ O)
	[TCO ₂ /MWH]	[TCH4/MWH]	[T N ₂ O/MWH]
Consumo de energía eléctrica del SEIN	0.17325228304	0.0000097581	0.00000121264

Nota. Tomado de MINAM, 2022.

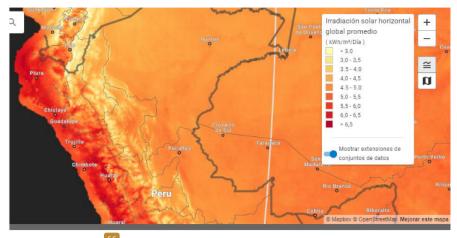

Para la obtención de datos que permitieron el dimensionamiento del sistema fotovoltaico se utilizó una base de datos de radiación solar obtenida a partir del satélite METEOSAT, estos datos se encuentran en la base de datos de radiación solar NSRDB (Ver Figura 17 y 18), la cual tiene valores por hora y media hora de las tres mediciones más comunes de radiación solar (irradiación horizontal global, normal directa y horizontal difuso). También se utilizó el GPS digital GPS Coordinates para la obtención de las coordenadas geográficas de la universidad y la ficha técnica del panel solar para determinar sus características eléctricas y físicas del panel solar (tamaño, potencia, material, etc.).

Figura 17. 20 Base de Datos de Radiación Solar Mundial

Nota. Tomado de *Photovoltaic Geographical Information System*, por el centro Informático de la Unión Europea, https://joint-research-centre.ec.europa.eu/photovoltaic-geographical-information-system-pvgis/pvgis-releases/pvgis-51 en

Figura 18.20
NSRDB: Base de datos nacional de radiación solar

Nota. Tomado de *Base de datos nacional de radiación solar*, por el Laboratorio Nacional de Energía Renovable, https://nsrdb.nrel.gov/

Po otro lado, para facilitar el dimensionamiento del sistema fotovoltaico en el Pabellón Benedicto XVI y Pabellón Santo Toribio de Mogrovejo, se llevó a cabo la recopilación de datos de un sistema fotovoltaico instalado en la Universidad Católica de Trujillo (Ver Figura 19.), este sistema estuvo compuesto de: Dos paneles solares de 60 W, un controlador *SOLAR CHARGE CONTROLLER* de 12 V y 10 A, un foco de 10 W, un inversor y una batería RT1720. Los datos obtenidos del sistema fotovoltaico fueron los siguientes: Voltaje producido por el SF y consumo diario del foco.

Figura 19.

Sistema Fotovoltaico instalado en la UCT para recopilación de datos

En el dimensionamiento del sistema fotovoltaico para el Pabellón Benedicto XVI, se utilizó un panel solar monocristalino de 600 W (Ver Figura 20) fabricado en el año 2022 por la empresa JAM solar con una eficiencia del 21.6 % y una vida útil de 25 años, se escogió este panel, porque cuenta con certificaciones ambientales además de que la empresa ejecuta proyectos que mitigan la huella de carbono producidas en la elaboración de sus productos, porque la huella de carbono del panel es de cero. Del mismo modo se utilizó un panel solar monocristalino de 605 W fabricado por la empresa JAM solar con una eficiencia del 21.5 % y una vida útil de 25 años.

Figura 20.

Panel Solar utilizado en el dimensionamiento de los sistemas fotovoltaicos de la UCT

Nota. Tomado de JASOLAR.

https://www.jasolar.com/uploadfile/2022/0513/20220513051007792.pdf

En ambos sistemas fotovoltaicos también se empleó el uso de un inversor para sistemas conectados a red, su nombre técnico es CSI-66KTL-GS-B (Ver Figura 21), es un inversor trifásico proporcionado por la empresa Canadian Solar, empresa que también cuenta con certificaciones ambientales y proyectos que ayudan a la mitigación del impacto que tienen con el medio ambiente.

Figura 21. *Inversor usado en el dimensionamiento de los SF*

Para la elaboración del presupuesto se utilizaron datos públicos, como el costo de la energía eléctrica en la ciudad de Trujillo, brindada por la empresa Hidrandina S.A. que es de s/. 0.69 por KWh; los costos de los componentes del sistema fotovoltaico obtenidos de páginas web como Auto Solar y Promart; también se tuvo en cuenta el porcentaje de inflación en el presente año que varía entre 0.32 y 7.89 %,

2.5. Técnica de procesamiento y análisis de información

Para procesar los datos del consumo eléctrico se utilizó una hoja de cálculo desarrollada (Excel) (Tabla 4 y 5.), que permitió determinar los parámetros eléctricos de la Universidad. Además, se dividieron en áreas cada pabellón para un mejor cálculo del consumo energético y la asignación del factor de simultaneidad (Ver Tabla 3.), en el caso del pabellón Benedicto XVI, se dividió en 4 áreas o ambientes y para el pabellón Santo Toribio se asignaron 7 ambientes, estos ambientes se pueden apreciar en la Tabla 2.

Tabla 2.

División de ambientes para cálculo energético por pabellón

Pabellón Benedicto XVI

Iluminación Salones de Clase Oficinas Administrativas Otros

Pabellón Santo Toribio de Mogrovejo

Iluminación
Salones de clase
Laboratorios
Oficinas Administrativas
Comedor
Tecnología de la Información
Otros

Tabla 3.Factor de Simultaneidad por ambiente y uso diario

Ambiente	Tiempo de uso diario (h)	Factor de Simultaneidad
Iluminación		
Todas las iluminarias	10	0.9 a 1
Luz LEDVANCE y foco reflector	< 5	0.3
Salones de clase		
Computadoras de escritorio, laptop y proyector	14	0.8
Otros elementos	< 10	0.3
Oficinas Administrativas		
Aire acondicionado, impresora multifuncional, computadora de escritorio, laptop	10	0.8
Otros elementos	< 10	0.2 a 0.3
Otros		
Detector de movimiento, detector de humo, cámara de seguridad, etc.	24	1
Tomacorrientes y conexiones de cable para	3	0.1 a 0.2
internet		
Otros elementos	< 5	0.1

Ambiente	Tiempo de uso diario (h)	Factor de Simultaneidad
Laboratorios		
Refrigerador, congelador y aire acondicionado	24	1
Otros equipos	< 9	0.3
Comedor		
Refrigerador	24	1
Otros elementos	< 9	0.3
Tecnología de la Información		
Aire acondicionado	24	1
DATACENTER	24	0.2

 Tabla 4.

 Plantilla para el consumo energético por pabellón

	Nombre del Pabellón								
					Ambiente				
N°	Aparato eléctrico	Potencia Individual	Tiempo de uso Diario	Cantidad de equipos	Factor de simultaneidad	Potencia Máxima	Potencia Requerida	KWh/mes	KWh/año
Co	nsumo E	nergético	Total						

El cálculo de la HC se analizó mediante la creación de graficas elaboradas a través de tablas en una hoja de cálculo desarrollada (Tabla 6.)

Tabla 5.

42

Plantilla para el cálculo de la Huella de Carbono por electricidad por pabellón

Nombre del Pabellón						
Ambiente						
N°	Aparato Eléctrico	Consumo Energético	T CO ₂	T CH ₄	T NO ₂	
Huel	lla de Carbono Total					

Los parámetros solares y geoespaciales se procesaron y analizaron en el software PVGIS 5.2 y PVsyst 7.3, el cual permitió el dimensionamiento del sistema fotovoltaico (Ver Figura 20 y 2).

Figura 22.

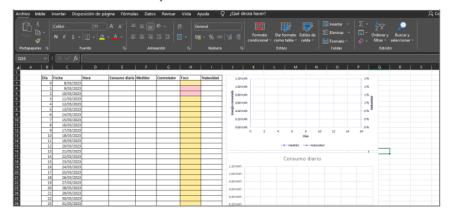
Ventana de procesamiento de datos para la orientación en el software PVsyst 7.3

Nota. Tomado de PVsyst 7.3 https://www.pvsyst.com/wp-content/pdf-tutorials/pvsyst-

tutorial-v7-grid-connected-1-en.pdf

Figura 23.

Ventana de procesamiento de datos el dimensionamiento del sistema fotovoltaico en el software PVsyst 7.3



Nota. Tomado de PVsyst 7.3 https://www.pvsyst.com/wp-content/pdf-tutorials/pvsyst-tutorial-v7-

grid-connected-1-en.pdf

Además, se utilizaron otros softwares como: Matlab, QGIS y Google Earth Pro. Así mismo, se procesó y analizó los datos recopilados por el sistema fotovoltaico que se instaló en Universidad Católica de Trujillo durante el mes de marzo en una hoja de cálculo Excel (Ver Tabla 5.) que permitió la elaboración de graficas a través de las mediciones recopiladas por día.

Figura 24.Plantilla de Excel donde se procesaron los datos del SF

Se utilizó el software PVsyst, para el procesamiento del costo de instalación y operación de ambos sistemas fotovoltaicos, tanto para el Pabellón Benedicto XVI, como para el Pabellón Santo Toribio de Mogrovejo (Ver Figura 23,24 y 25)

Figura 25.

Ventana de los costos de instalación en el software PVsyst 7.3

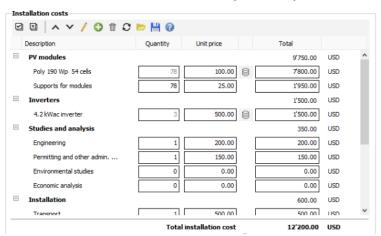
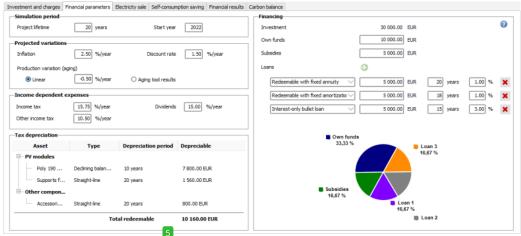
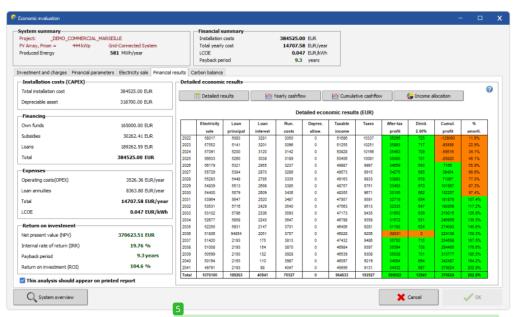



Figura 26.


Ventana del resumen de los parámetros financieros en el software PVsyst 7.3

Nota. Tomado de *PVsyst 7.3* https://www.pvsyst.com/wp-content/pdf-tutorials/pvsyst-tutorial-v7-grid-connected-1-en.pdf

Figura 27.

Ventana del resumen de los resultados financieros finales en el software PVsyst 7.3

Nota. Tomado de *PVsyst 7.3* https://www.pvsyst.com/wp-content/pdf-tutorials/pvsyst-tutorial-v7-grid-connected-1-en.pdf

2.6. Aspectos éticos en investigación

Esta investigación científica se desarrolló con transparencia, integridad y respetando las normas éticas de investigación, sin manipular ningún resultado o dato. Por otro lado, la investigación ayudo al dimensionamiento de un sistema fotovoltaico en el pabellón principal y nuevo de la UCT en Moche, permitiendo la recopilación de datos para la instalación de un sistema fotovoltaico eficiente y rentable.

III. RESULTADOS

El campus principal de la Universidad Católica de Trujillo Benedicto XVI, está situada en el Departamento de La Libertad, Provincia de Trujillo, Distrito de Moche; posee dos pabellones destacados, el Pabellón A1 "Benedicto XVI" y el pabellón A2 "Santo Toribio de Mogrovejo", cuyas coordenadas son: latitud -8.16, longitud - 79.01.

Figura 28. Área de mapeo de Universidad Católica de Trujillo

3.1. Consumo Energético

Los pabellones principales de la Universidad Católica de Trujillo en el campus de Moche tienen un consumo energético de 67 453 KWh/mes; del total, un 66.53% corresponde al Pabellón "Santo Toribio de Mogrovejo" con un consumo de 44 729 KWh/mes y un 33.47% al Pabellón "Benedicto XVI" con un consumo de 22 724 KWh/mes (Ver Tabla 7.)

Tabla 6.Consumo Energético en la UCT

	Consumo Energética (KWh/mes)
Pabellón "Benedicto XVI"	22 724
Pabellón "Santo Toribio de Mogrovejo"	44 729
Total	67 453

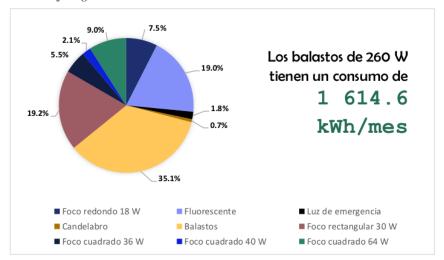
El Pabellón "Benedicto XV" tiene un mayor consumo energético en el área de salones de clase con un consumo de 10 590.65 KWh/mes (Ver Tabla 8.) que equivale al 46.61 %, este elevado consumo se debe a los elementos que se usan en cada área (Ver Figura 29.), siendo los principales: Computadora de escritorio, proyector y laptop. También se tiene con un 23.56 % del consumo total, al área de oficinas administrativas, un 20.23 % el área de iluminación y un 9.6 % que representa a otros elementos que también consumen energía eléctrica (sensores de humo, detectores de movimiento, enchufes, etc.).

Tabla 7.

Consumo Energético en el Pabellón "Benedicto XVI"

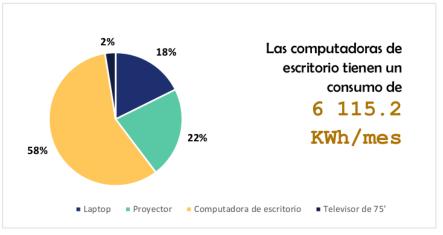
	Potencia Requerida (W)	KWh/mes	KWh/año
Iluminación	15 163.2	4 597.34	55 168.13
Salones de Clase	27 363.2	10 590.65	127 087.8
Oficinas Administrativas	20 789	5 353.95	64 247.4
Otros	11 992.05	2 182.01	26 184.13
Total	75 307.45	22 723.95	272 687.44

Figura 29.


Consumo Energético del Pabellón "Benedicto XVI" en un año

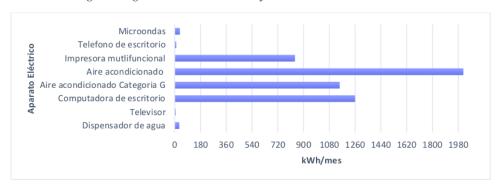
En la Figura 30. se puede apreciar las diferentes iluminarias distribuidas en todo el Pabellón Benedicto XVI; el mayor consumo es de los balastos con un 35.1%, también tenemos a los focos rectangulares de 30 W y fluorescentes, que tienen un consumo de 882.9 y 874.8 KWh/mes respectivamente; la iluminaria con menor consumo es la del candelabro con 32.4 KWh/mes.

Figura 30.


Porcentaje según elemento del área Iluminación – Benedicto XVI

En la Figura 31. se puede apreciar el área de salones de clase, siendo la computadora de escritorio el elemento que tiene un mayor consumo energético, seguido del proyector con un consumo de 2 333.448 KWh/mes; la laptop con 1 872 KWh/mes y el televisor de 75° con 270 KWh/mes. El elevado consumo energético que representan los salones de clase está directamente relacionado con las horas de uso de estos elementos, por ser ambientes de estudio que están activos durante casi 14 horas; ya que la universidad trabaja desde las 7:00 am hasta las 9:00 pm.

Figura 31.


Porcentaje según elemento del área Salones de clase – Benedicto XVI

En la Figura 32. se puede apreciar el consumo energético que existe en las oficinas administrativas del Pabellón Benedicto XVI, siendo el elemento más sobresaliente el aire acondicionado de 3 500 W con más de 2 000 KWh/mes, a diferencia del aire acondicionado de categoría G que consume un poco más de la mitad que este; esta diferencia se debe a las cantidades de equipos que existe ya que en el caso del aire acondicionado de 3 500 W, se cuenta con muchos más equipos en comparación con el aire acondicionado de categoría G. El segundo elemento que más energía consume es la computadora de escritorio al igual que en los salones de clase con un consumo de 1 260 KWh/mes, y luego tenemos a los elementos que consumen menos de 40 KWh/mes, como: Microondas, teléfono de escritorio, televisor y dispensador de agua, estos elementos tienen un factor de simultaneidad ≥ 0.3, y un tiempo de uso diario menor, en comparación con los aires acondicionados, las computadoras e impresoras que están activos durante toda la jornada del personal administrativo y tienen un factor de simultaneidad de 0.8.

Figura 32.

Consumo energético según elemento del área Oficinas Administrativas – Benedicto XVI

En el área de otros se tiene un consumo de 2 182.01 KWh/mes. Los elementos que poseen un mayor consumo energético entre los valores de $300 < x \le 500$ KWh/mes son: Tomacorrientes, enchufes para internet, módulos WIFI, máquina expendedora de snacks y la máquina expendedora de bebidas, representando en conjunto un 80.68% del consumo total.

En la Figura 33. se puede apreciar la potencia que requiere cada piso del Pabellón Benedicto XVI, siendo el piso 3 y 4 los que requieren una mayor potencia, 23.22 y 22.05 KWh respectivamente, el consumo en el piso 3 es elevado por la presencia de aires acondicionados en el área de las oficinas administrativas y en el piso 4 por la presencia del centro de cómputo que cuenta con 41 computadoras de escritorio. En el piso 1 y 2 el consumo es bastante similar debido a que posee una cantidad parecida de elementos y distribución de salones y oficinas.

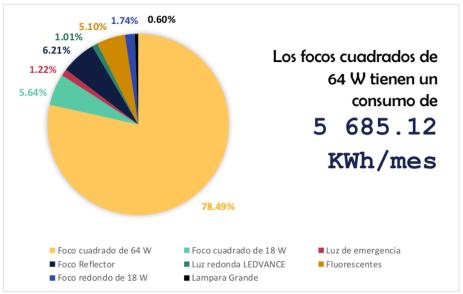
El Pabellón Santo Toribio de Mogrovejo tiene un consumo total 44 728.62 KWh/mes y 536 743.44 KWh/año (Ver Tabla 9 y Figura 34). El área con el mayor consumo energético es el de tecnología de la información con el 31.68 %, le sigue las áreas de oficinas administrativas, iluminación, salones de clase y laboratorios con 17.31 %, 16 %, 15.73 % y 10.39 %; por último, tenemos a las áreas con un consumo energético > 10 % y son: Iluminación, comedor y otros.

 Tabla 8.

 Consumo Energético en el Pabellón Santo Toribio de Mogrovejo

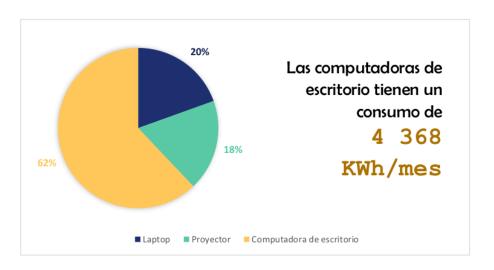
	Potencia Requerida (W)	KWh/mes	KWh/año
Iluminación	2 5473	7 243.308	86 919.69
Salones de Clase	18 044	7 037.16	84 445.92
Laboratorios	20 100.28	4 647.73	55 772.78
Comedor	2 970	1 087.2	13 046.4
Oficinas Administrativas	25 801	7 740.3	92 883.6
Tecnología de la Información	19 682.4	14 171.3	170 055.9
Otros	20 813.6	2 801.59	33 619.1
Total	132 884.28	44 728.62	536 743.44

Figura 34.


Consumo Energético del Pabellón Santo Toribio de Mogrovejo en un año

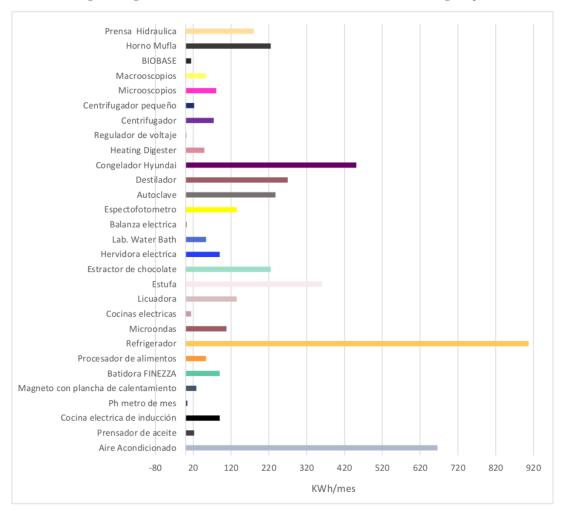
En la Figura 35. se aprecia el diagrama del consumo energético en el área de iluminación, siendo el foco cuadrado de 64 W, el elemento que tiene el mayor consumo de energía con un 78.49 %. Luego, tenemos a los focos cuadrados de 18 W y fluorescentes con un consumo de 408.24 KWh/mes y 369.36 KWh/mes que representa un 5.64 % y 5.10 %; por último, tenemos a la lampara grande, etc. con un consumo > 130 KWh/mes, que en su conjunto representan el 5 %.

Figura 35.


Porcentaje según elemento del área Iluminación – Santo Toribio de Mogrovejo

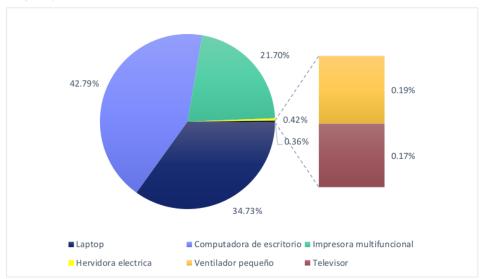
En la Figura 36. se aprecia el diagrama del consumo energético en el área de salones de clase, esta área tiene el cuarto mayor consumo a nivel de pabellón y el elemento que más consume energía es la computadora de escritorio. Los salones de clase están operativos durante 14 horas de 7:00 am a 9:00 pm con un factor de simultaneidad de 0.8, esto hace que el consumo sea elevado en comparación a otros ambientes.

Figura 36.


Porcentaje según elemento del área salones de clase – Santo Toribio de Mogrovejo

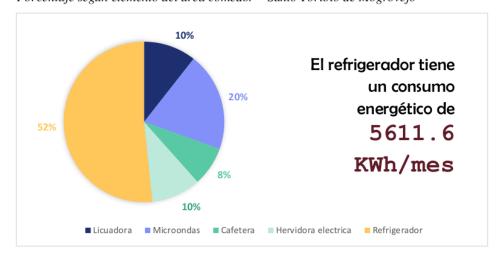
En la Figura 37. se aprecia el área de laboratorios, con sus respectivos elementos, esta área tiene el quinto mayor consumo a nivel de pabellón los elementos que más destacan con un consumo de energía mayor a 450 KWh/mes son: El refrigerador, aire acondicionado y congelador, debido a que son artefactos que están encendidos durante mayor tiempo y tienen una potencia requerida elevada. Por otro lado, el consumo elevado en los laboratorios también se debe a que la mayoría de equipos tienen una potencia mayor en comparación con los elementos de otras áreas, como, por ejemplo: Destilador, estufa, espectrofotómetro, etc.

Figura 37.


Consumo energético según elemento del área Laboratorios – Santo Toribio de Mogrovejo

El área de oficinas administrativas como se aprecia en la Figura 38. tiene tres elementos con un consumo de energía elevado y son: Computadora de escritorio, impresora multifuncional y laptop con un consumo de 3 312, 2 688 y 1 680 KWh/mes. Esta área tiene el segundo consumo energético más alto y se debe a que el uso de sus tres elementos antes mencionados se utiliza durante 10 horas y con un factor de simultaneidad de 0.8.

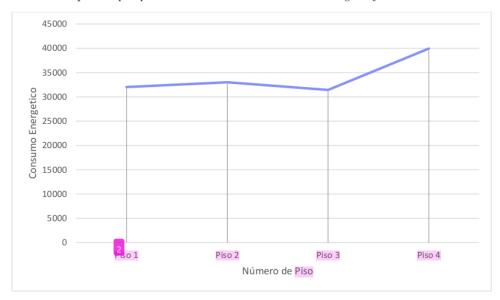
Figura 38.


Porcentaje según elemento del área Oficinas Administrativas — Santo Toribio de Mogrovejo

En el comedor se emplean algunos elementos básicos que se usan para la preparación de alimentos y son: Licuadora, microondas, refrigerador, cafetera y hervidor; de los cuales, el que tiene un mayor consumo es el refrigerador representando el 52 % del total y el que tiene el menor consumo es la cafetera con un consumo de 86.4 KWh/mes.

Figura 39.

Porcentaje según elemento del área comedor – Santo Toribio de Mogrovejo



El área de tecnología de información, tiene el mayor consumo energético, debido a que existen 3 áreas en todo el pabellón y cada una cuenta con un DATACENTER, aire acondicionado y computador, que están operativos todo el día y poseen una potencia requerida elevada para su correcto funcionamiento.

En el área de otros se tiene un consumo de 2 802 KWh/mes. Los elementos que poseen un mayor consumo energético entre los valores de $600 < x \le 981$ KWh/mes son: Tomacorrientes, enchufes para internet y módulos WIFI, representando en conjunto un 85.76% del consumo total.

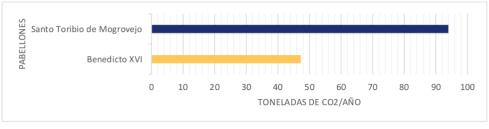
Figura 40.

Potencia Requerida por piso del Pabellón Santo Toribio de Mogrovejo

En la Figura 40. se puede apreciar la potencia que requiere cada piso del Pabellón Santo Toribio de Mogrovejo, siendo el piso 4 el que requiere una mayor potencia, 39.9 KWh respectivamente. El consumo en el piso 3, 2 y 1 es bastante similar, siendo >33 KWh.

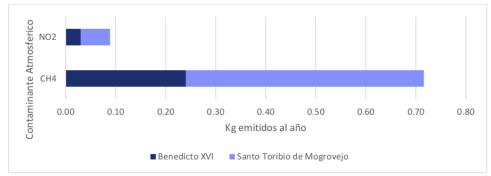
3.2. Huella de Carbono por electricidad

El volumen total de emisiones de CO₂, CH₄ y NO₂ que emiten los pabellones principales de la Universidad Católica de Trujillo en el campus de Moche por consumo energético son de 141.21 T CO₂, 0.8 Kg CH₄ y 0.1 Kg NO₂ al año, teniendo como el contaminante atmosférico más representativo al dióxido de carbono; sin embargo, es importante recordar que 1 T de CH₄ es equivalente a 25 T CO₂, por lo que, por más pequeña que sea la cantidad de metano emitida al medio ambiente, tendrá un impacto ambiental significativo. Así mismo, la huella de carbono del Pabellón Benedicto XVI es de 47.26 T CO₂ representando el 33.47 % y el pabellón Santo Toribio de Mogrovejo tiene una huella de 93.95 que representa el 66.53 % del total (Ver Figura 41).


 Tabla 9.

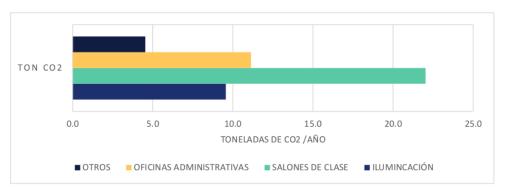
 Huella de carbono por Consumo Energético en la Universidad Católica de Trujillo

	Ambiente	T CO ₂	Kg CH ₄	Kg NO ₂
	Iluminación	9.56	0.05406	0.00669
PABELLÓN	Salones	22.02	0.12455	0.01542
BENEDICTO XVI	Oficinas Administrativas	11.13	0.06296	0.00779
	Otros	4.54	0.02566	0.00318
	Total	47.26	0.2672	0.0331
PABELLÓN	Iluminación	16.00	0.0905	0.0112
	Salones de Clase	14.63	0.0828	0.0102
	Oficinas Administrativas	16.10	0.0910	0.0113
SANTO	Laboratorios	9.67	0.0547	0.0068
TORIBIO DE MOGROVEJO	Comedor	2.26	0.0128	0.0016
MOGROVEJO	Tecnología de la Información	29.47	0.1667	0.0206
	Otros	5.83	0.0329	0.0041
	Total	93.95	0.5313	0.0658
	TOTAL	141,21	0.80	0.10


Figura 41.

Dióxido de Carbono emitido por consumo energético en los pabellones de la Universidad Católica de Trujillo al año

En la Figura 42. se pueden apreciar las emisiones de metano y dióxido nitroso que emiten el Pabellón Benedicto XVI y Santo Toribio de Mogrovejo a la atmósfera por consumo energético. En el caso del Pabellón Benedicto XVI se emiten 0.0298 Kg de NO₂ y 0.241 Kg de CH₄ al año; de la misma manera, el Pabellón Santo Toribio de Mogrovejo emite 0.0589 Kg de NO₂ y 0.476 Kg de CH₄ al año.


Figura 42.Metano y Dióxido Nitroso emitido por consumo energético en los pabellones de la Universidad Católica de Trujillo al año

En el Pabellón Benedicto XVI, el área o ambiente que tiene una mayor huella de carbono por consumo energético es los salones de clase como se muestra en la Figura 43 y 45, emitiendo 22 T de $\rm CO_2$ al año que representa el 46.59 % del total, luego le siguen las áreas de oficinas administrativas e iluminación con una huella de carbono de 11 y 9.5 T de $\rm CO_2$ al año, representando un 23.28 y 20 %.

Figura 43.

Dióxido de Carbono emitido por ambiente en el Pabellón Benedicto XVI

En la Figura 44. se muestra el metano y dióxido nitroso emitido por área en el Pabellón Benedicto XVI. El área que emite mayor cantidad de CH₄ y NO₂ es el salón de clase con 0.015 Kg de NO₂ y 0.12 Kg de CH₄ al año; por otro lado, el área que tiene una menor emisión es la de otros con 0.003 Kg de NO₂ y 0.03 Kg de CH₄ al año.

Figura 44.

Metano y Dióxido Nitroso emitido por ambiente en el Pabellón Benedicto XVI

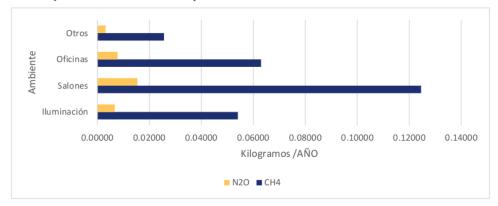
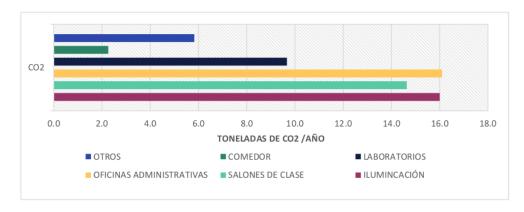


Figura 45.

Porcentaje por ambiente de T CO2 emitido al año en el Pabellón Benedicto XVI



En la Figura 46. se aprecia la cantidad en toneladas de dióxido de carbono emitidas al año por ambiente en el Pabellón Santo Toribio de Mogrovejo de la Universidad Católica de Trujillo, siendo las más representativas las áreas de oficinas administrativas,

iluminación y salones de clase (Ver Figura 48.) con 16, 15.9 y 14.6 T CO₂. El área que tiene un menor impacto representando el 2 % es el comedor con 2.3 T CO₂.

Figura 46.

Dióxido de Carbono emitido por ambiente en el Pabellón Santo Toribio de Mogrovejo

La Figura 47. muestra la cantidad de metano y dióxido nitroso emitidos al año por cada ambiente del Pabellón Santo Toribio de Mogrovejo, siendo la más resaltante el área de tecnología de la información emitiendo 0.021 Kg de NO₂ y 0.17 Kg de CH₄ al año. Luego le siguen las áreas de oficinas, iluminación, salones y laboratorios con 0.011, 0.011, 0.010, 0.007 Kg de NO₂ y 0.09, 0.09, 0.08 y 0.06 Kg de CH₄ al año.

Figura 47.

Metano y Dióxido Nitroso emitido por ambiente en el Pabellón Santo Toribio de Mogrovejo

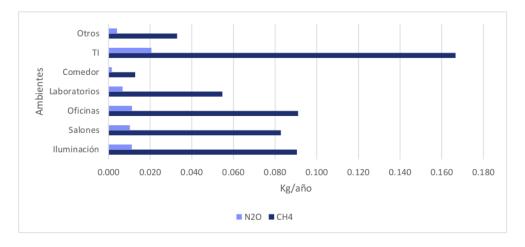
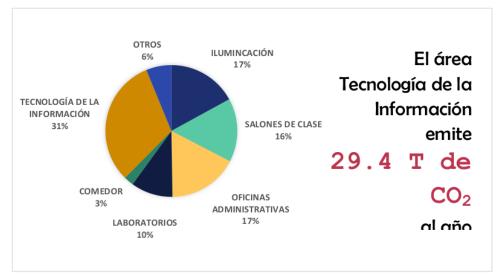
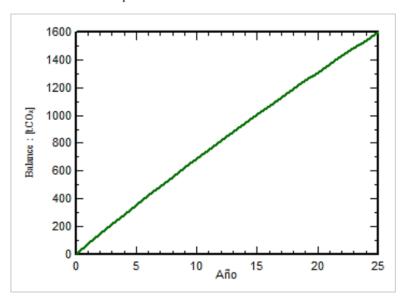
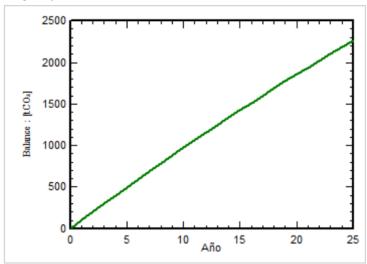



Figura 48.


Porcentaje por ambiente de T CO2 emitido al año en el Pabellón Santo Toribio de Mogrovejo

El sistema fotovoltaico dimensionado por teledetección en el software PVsyst 7.3 para el Pabellón Benedicto XVI permite ahorrar a lo largo de la vida útil del sistema que son 25 años un total de 1 598.92 T de CO₂ (Ver Figura 49).

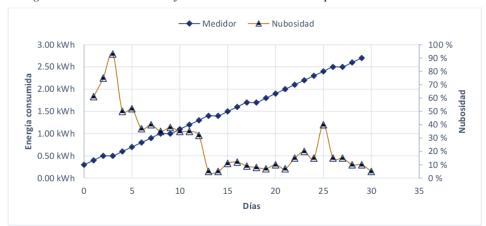
Figura 49.


Balance de Carbono por año en el Pabellón Benedicto XVI

Por otro lado, el sistema fotovoltaico dimensionado por teledetección en el software PV syst 7.3 para el Pabellón Santo Toribio de Mogrovejo permite ahorrar a lo largo de la vida útil del sistema que son un total 25 años un total de 2 263.980 T de CO₂ (Ver Figura 50).

Figura 50.

Balance de Carbono por año en el Pabellón Santo Toribio de Mogrovejo



3.3. Dimensionamiento del Sistema Fotovoltaico

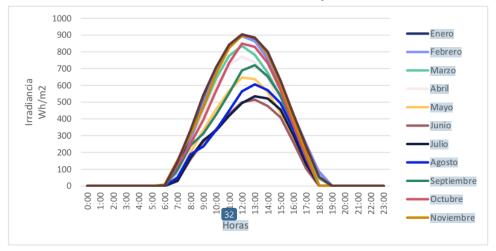
El sistema fotovoltaico compuesto de dos paneles solares, un controlador, una batería y un foco instalado en la Universidad Católica de Trujillo, tuvo una energía consumida final de 2.5 KWh durante 30 días en un espacio de 3.3 m² como se aprecia en la Figura 51., lo que significa que el foco consumió una energía diaria de 0.1 KWh.

Figura 51.

Energía consumida del sistema fotovoltaico instalado en un período de 30 días

Los parámetros solares que se obtuvieron de la base de datos Meteonorm a través del software PVsyst 7.3 se logran observar en la Tabla 11. de donde se tomó la irradiación horizontal global promedio que es 6.3 KWh/m²/día para el cálculo de la potencia instalada pico en las áreas de 700 m² y 950 m², obteniendo una potencia pico instalada por pabellón de 144 kWp y 200 kWp. La temperatura promedio es de 19.6 °C, esto le permite al sistema fotovoltaico operar de manera óptima sin generar un sobrecalentamiento en las células fotovoltaicas. La velocidad del viento y humedad relativa son de 3.6 m/s y 83.8%.

Tabla 10.Parámetros solares promedios para el dimensionamiento del sistema fotovoltaico durante los años 2016-2021


	Irradiación horizontal global	Irradiación difusa horizontal	Temperatura	Velocidad del Viento	Turbidez Linke	Humedad relativa
	KWh/m²/día	KWh/m²/día	$^{\circ}\mathrm{C}$	m/s	[-]	%
Enero	6.62	2.55	21.8	3.50	3.676	81.5

	Irradiación horizontal global	Irradiación difusa horizontal	Temperatura	Velocidad del Viento	Turbidez Linke	Humedad relativa
54	KWh/m²/día	KWh/m²/día	$^{\circ}\mathrm{C}$	m/s	[-]	%
Febrero	6.44	2.74	22.9	3.30	3.669	81.9
Marzo	6.61	2.38	22.6	3.40	3.669	82.6
Abril	6.24	2.07	20.4	3.60	4.079	86.1
Mayo	5.75	1.82	19.6	3.69	4.074	84.4
Junio	5.28	1.81	18.6	3.50	3.914	85.3
Julio	5.35	1.85	18.2	3.50	3.746	84.1
Agosto	5.28	2.35	17.6	3.61	4.030	84.3
Septiembre	5.66	2.36	17.2	3.90	4.328	85.7
Octubre	6.19	2.80	17.7	3.90	3.934	83.2
Noviembre	6.50	2.39	18.4	3.70	3.869	83.6
Diciembre	6.51	2.58	20.0	3.60	3.832	82.7
Año	6.03	2.31	19.6	3.6	3.902	83.8

La irradiancia media diaria obtenida de la base de datos PVGIS-NSRBD se puede apreciar en la Figura 52. donde se aprecia que la irradiación empieza a subir a partir de la 06:00 am. y finaliza a las 6:00 pm, llegando a un punto máximo de captación de irradiación que es de 12:00 pm a 01:00 pm a lo largo del día, lo que significa que los paneles funcionaran durante 10 horas y llegan a su máximo rendimiento durante 8 horas de 8:00 am a 4:00 pm. El mes que posee una mayor irradiancia es el mes de diciembre, llegando a un nivel de irradiancia de 904.5 Wh/m² y el mes con un nivel de irradiancia mínimo es el de junio llegando a un nivel de 5000 Wh/m².

Figura 52.

Irradiancia media diaria en la Universidad Católica de Trujillo

El sistema fotovoltaico diseñado para un consumo anual de 273 MWh que requiere el Pabellón Benedicto XVI, tiene una potencia nominal de 144 kWp como se observa en la Tabla 12. Por otro lado, ya que se usó en el dimensionamiento el módulo fotovoltaico monocristalino JAM78 de 600 W, se requiere un total de 240 módulos para satisfacer la energía requerida, la conexión es de 16 cadenas x 15 paneles en serie y se necesitan 2 inversores de 66 KW. En la Tabla 13. se observa que la energía proporcionada por el SF es de 276 MWh/año, con una producción especifica de 1 915 KWh/KWp/año y un rendimiento del 85.7 %.

Tabla 11.Características del Sistema Fotovoltaico dimensionado para el Pabellón Benedicto XVI

Módulos FV	
Nombre	JAM78-S30-600-MR
Potencia Nominal	144 kWp
Voltaje MPP	44.9 V
Corriente MPP	13.4 A
Núm. de módulos	240
Conexión de módulos	16 cadenas x 15 series
Área del sistema	671 m^2
Inversor	
Nombre	CSI-66KTL-GS
Inv. por Unidad de Potencia	66.0 KW
Núm. de entradas MPPT	8
Núm. de inversores	2

Tabla 12.Resultados principales del SF dimensionado para el Pabellón Benedicto XVI

Sistema FV Pabellón Benedicto XVI					
Producción del sistema	276 MWh/año				
Producción específica	1 915 KWh/KWp/año				
Producción normalizada	5.25 KWh/KWp/día				
Proporción de rendimiento	0.857				
Pérdidas del conjunto	0.79 KWh/KWp/día				
Pérdidas del sistema	0.09 KWh/KWp/día				

En la Tabla 14. se muestran los resultados de la energía inyectada a la salida del conjunto, la energía inyectada a la red y el rendimiento del SF por mes. El promedio de la energía inyectada a la red por año es 275 729 KWh, con un rendimiento del 85.7 %. Siendo el mes de febrero, el mes que tiene la menor energía con 21 191KWh y marzo el mes que tiene la mayor energía inyectada a la red con 25 0304 KWh.

Tabla 13.Balance y resultados finales del sistema fotovoltaico dimensionado para el Pabellón Benedicto XVI

	Irradiación horizontal global	Irradiación difusa horizontal	Temperatura ambiente	Energía inyectada a la salida del conjunto	Energía inyectada a la red	Proporción de rendimiento
	51 KWh/m ²	KWh/m²	°C	KWh	KWh	%
Enero	205.1	78.96	21.84	23 824	23 417	84.5
Febrero	180.5	76.77	22.88	21 558	21 191	84.2
Marzo	204.8	73.80	22.60	25 454	25 034	84.2
Abril	187.1	62.16	20.36	24 625	24 218	85.2
Mayo	178.4	56.43	19.60	24 610	24 215	85.9
Junio	158.4	54.18	18.60	22 403	22 051	86.8
Julio	165.8	57.36	18.18	23 232	22 867	86.9
Agosto	163.7	72.78	17.59	22 175	21 825	87.2
Septiembre	169.8	70.67	17.17	22 086	23 720	86.7
Octubre	191.9	86.83	17.70	23 886	23 501	86.5
Noviembre	195.0	71.60	18.38	23 064	22 688	85.7
Diciembre	201.8	80.08	20.00	23 380	23 003	85.3
Año	2202.4	841.60	19.56	280 296	275 729	85.7

En la Figura 53. se muestra la energía incidente de referencia promedio que se capta por mes. El mes de marzo es el que posee una mayor energía incidente con 6.5 KWh/m²/día y el mes de agosto posee la menor energía incidente con 5.5 KWh/m²/día, esto significa que el sistema fotovoltaico recibirá un nivel de radiación entre 5.5 y 6.5 KWh/m²/día, lo que corresponde a un nivel de radiación alta. En la gráfica de la Figura 54. se muestra la energía diaria a la salida del sistema a lo largo de un año. La energía inyectada a la red proporcionada por el SF varía entre 500 KWh/día y 950 KWh/día; sin embargo, en la gráfica también se observan algunos picos descendientes que pueden llegar hasta 180 KWh/día.

Figura 53.

Energía incidente de referencia en el plano colector – Pabellón Benedicto XVI

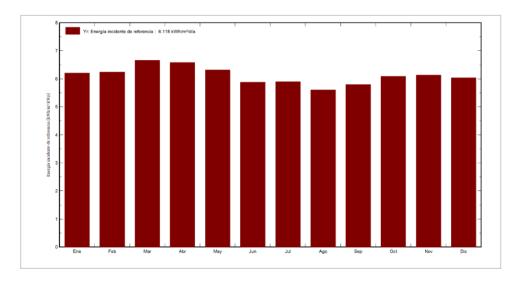
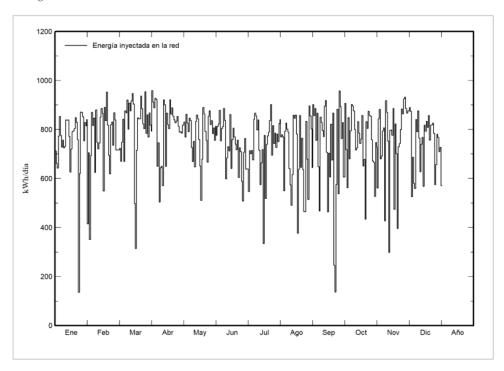
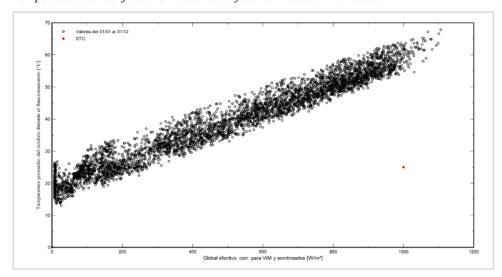
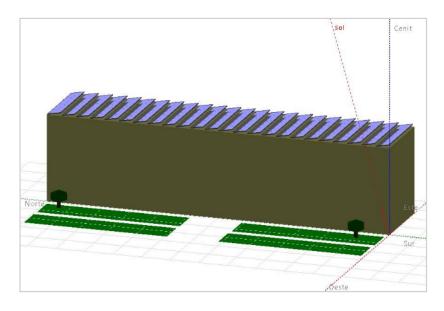



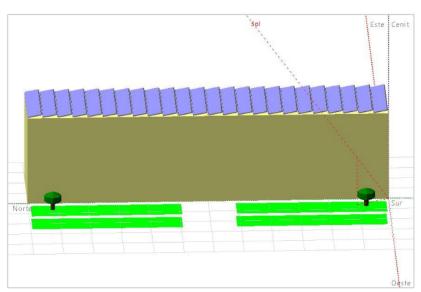
Figura 54.


Energía diaria a la salida del sistema – Pabellón Benedicto XVI

La temperatura ambiente influye de manera directa en el rendimiento óptimo de un SF, el *standard test condictions* (STC), determina que en una radiación de 1000 W/m² la célula fotovoltaica opera de manera óptima a una temperatura de 25 °C como se aprecia en la Figura 55. sin embargo, cuando se lleva al caso práctico esto no se da, y se puede observar claramente con el funcionamiento del SF dimensionado para el Pabellón Benedicto XVI. La radiación promedio que recibe el SF tiene una mayor concentración entre los valores de 600 y 1 000 W/m², operando con una temperatura entre 40 y 60 °C. Por otro lado, a pesar de tener una temperatura de modulo elevada durante el funcionamiento, el SF aún opera de manera óptima.


Figura 55.

Temperatura del conjunto vs irradiancia efectiva - Pabellón Benedicto XVI



El diseño 3D del Sistema Fotovoltaico a lo largo del día, dimensionado para el Pabellón Benedicto XVI se puede apreciar en las Figuras 56, 57 y 58, donde se observa que a las 6: 00 am. hora en la que recién empieza a salir el sol, la luminosidad es leve al igual que en la 6:00 pm que es la hora donde el sol ya empieza a descender; por otro lado, a la 1:00 pm. se observa una luminosidad muy alta debido a que la radiación está en la hora solar pico.

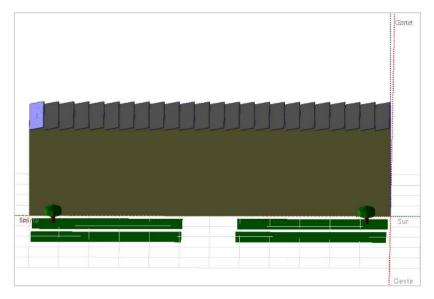

Figura 56.Modelo 3D del SF dimensionado en el Pabellón Benedicto XVI - Hora: 6:00 am.

Figura 57.Modelo 3D del SF dimensionado en el Pabellón Benedicto XVI - Hora: 1:00 pm

Figura 58.Modelo 3D del SF dimensionado en el Pabellón Benedicto XVI - Hora: 6:00 pm

El sistema fotovoltaico diseñado para un consumo anual de 370 MWh que requiere el Pabellón Santo Toribio de Mogrovejo, tiene una potencia nominal de 200 kWp como se observa en la Tabla 15. Por otro lado, ya que se usó en el dimensionamiento el módulo fotovoltaico monocristalino JAM78 de 605 W, se requiere un total de 330 módulos para satisfacer la energía requerida, la conexión es de 22 cadenas x 15 paneles en serie y se necesitan 3 inversores de 66 KW. En la Tabla 16. se observa que la energía proporcionada por el SF es de 390 MWh/año, con una producción especifica de 1 956 KWh/KWp/año y un rendimiento del 87.6 %. Para el dimensionamiento del sistema fotovoltaico solo se tuvieron en cuenta las siguientes áreas: Iluminación, salones de clase, oficinas administrativas, laboratorios, comedor y otros; debido a que el área de tecnologías de la información tiene su propio sistema de alimentación de energía.

Tabla 14.Características del Sistema Fotovoltaico dimensionado para el Pabellón Santo Toribio de Mogrovejo

Módulos FV	
Nombre	JAM78-S30-605-MR
Potencia Nominal	200 kWp

Módulos FV	
Voltaje MPP	45.1 V
Corriente MPP	13.4 A
Núm. de módulos	330
Conexión de módulos	22 cadenas x 15 series
Área del sistema	922 m ²
Inversor	
Nombre	CSI-66KTL-GS
Inv. por Unidad de Potencia	66.0 KW
Núm. de inversores	3

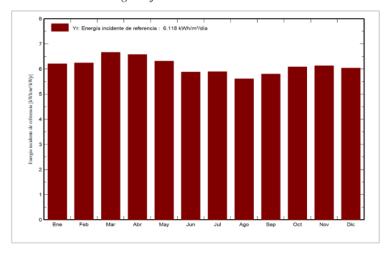
Tabla 15.

Resultados principales del SF dimensionado para el Pabellón Santo Toribio de Mogrovejo

Sistema FV Pabellón Sa	anto Toribio de Mogrovejo
Producción del sistema	390 MWh/año
Producción específica	1 956 KWh/KWp/año
Oducción normalizada	5.36 KWh/KWp/día
Proporción de rendimiento	0.876
Pérdidas del conjunto	0.67 KWh/KWp/día
Pérdidas del sistema	0.09 KWh/KWp/día

En la Tabla 17. se muestran los resultados de la energía inyectada a la salida del conjunto, la energía inyectada a la red y el rendimiento del SF por mes en el Pabellón Santo Toribio de Mogrovejo. El promedio de la energía inyectada a la red por año es 390 418 KWh, con un rendimiento del 87.6 %. Siendo el mes de febrero, el mes que tiene la menor energía con 30 039 KWh y marzo el mes que tiene la mayor energía inyectada a la red con 35 558 KWh.

Tabla 16.Balance y resultados finales del sistema fotovoltaico dimensionado para el Pabellón Santo Toribio de Mogrovejo


	Irradiación horizontal global	Irradiación difusa horizontal	Temperatura ambiente	Energía inyectada a la salida del conjunto	Energía inyectada a la red	Proporción de rendimiento
	KWh/m ²	KWh/m ²	°C	KWh	KWh	%
Enero	205.1	78.96	21.84	33 737	33 165	86.3
Febrero	180.5	76.77	22.88	30 556	30 039	86.1
Marzo	204.8	73.80	22.60	36 150	35 558	86.3
Abril	187.1	62.16	20.36	34 943	34 372	87.3
Mavo	178.4	56.43	19.60	34 858	34 306	87.8

	Irradiación horizontal global	Irradiación difusa horizontal	Temperatura ambiente	Energía inyectada a la salida del conjunto	Energía inyectada a la red	Proporción de rendimiento
32	KWh/m ²	KWh/m ²	°C	KWh	KWh	%
Junio	158.4	54.18	18.60	31 667	31 178	88.5
Julio	165.8	57.36	18.18	32 841	32 334	88.6
Agosto	163.7	72.78	17.59	31 314	30 828	88.8
Septiembre	169.8	70.67	17.17	31 251	30 738	88.5
Octubre	191.9	86.83	17.70	33 785	33 247	88.3
Noviembre	195.0	71.60	18.38	32 653	32 127	87.5
Diciembre	201.8	80.08	20.00	33 050	32 524	87.0
Año	2202.4	841.60	19.56	390 418	390 418	87.6

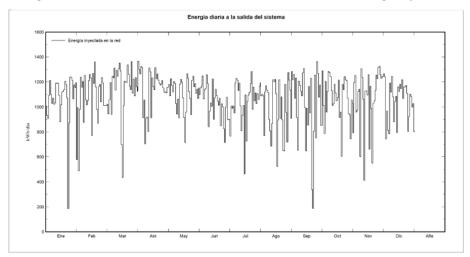
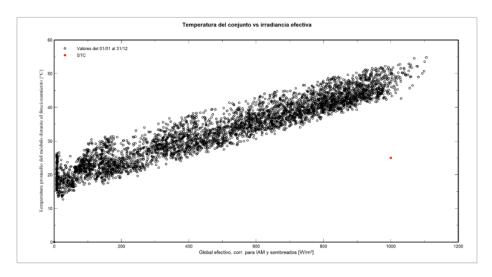

En la Figura 59. se muestra la energía incidente de referencia promedio que se capta por mes. El mes de marzo es el que posee una mayor energía incidente con 6.5 KWh/m²/día y el mes de agosto posee la menor energía incidente con 5.5 KWh/m²/día, esto significa que el sistema fotovoltaico recibirá un nivel de radiación entre 5.5 y 6.5 KWh/m²/día al igual que SF del Pabellón Benedicto XVI y esto debido a que ambos sistemas fotovoltaicos están instalados en la misma ubicación geográfica. En la gráfica de la Figura 60. se muestra la energía diaria a la salida del sistema a lo largo de un año en el Pabellón Santo Toribio de Mogrovejo. La energía inyectada a la red proporcionada por el SF varía entre 700 KWh/día y 1390 KWh/día; sin embargo, en la gráfica también se observan algunos picos descendientes que pueden llegar hasta 200 KWh/día.

Figura 59.

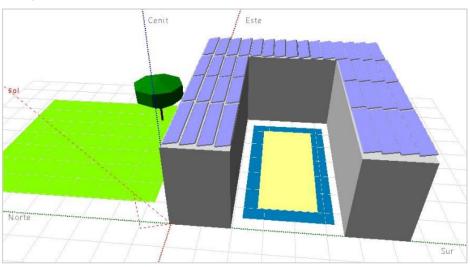
Energía incidente de referencia en el plano colector — Pabellón Santo Toribio de Mogrovejo


Figura 60.Energía diaria a la salida del sistema – Pabellón Santo Toribio de Mogrovejo

La radiación promedio que recibe el SF tiene una mayor concentración entre los valores de 600 y 1 000 W/m^2 , operando con una temperatura entre 40 y 50 °C.

Figura 61.


Temperatura del conjunto vs irradiancia efectiva - Pabellón Santo Toribio de Mogrovejo


El diseño 3D del Sistema Fotovoltaico a lo largo del día, dimensionado para el pabellón Santo Toribio de Mogrovejo se puede apreciar en las Figuras 62, 63 y 64, donde se

observa que a las 6: 00 am. hora en la que recién empieza a salir el sol, la luminosidad es leve al igual que en la 6:00 pm que es la hora donde el sol ya empieza a descender; por otro lado, a la 1:00 pm. se observa una luminosidad muy alta debido a que la radiación está en la hora solar pico.

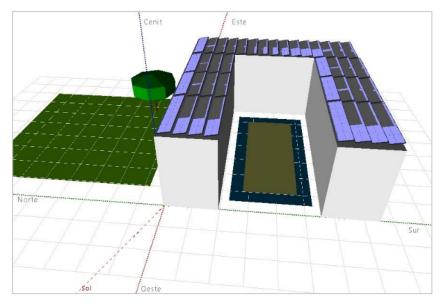

Figura 62. *Modelo 3D del SF dimensionado en el Pabellón Santo Toribio de Mogrovejo - Hora:* 7:00 am.

Figura 63. *Modelo 3D del SF dimensionado en el Pabellón Santo Toribio de Mogrovejo - Hora:* 1:00 pm.

Figura 64. *Modelo 3D del SF dimensionado en el Pabellón Santo Toribio de Mogrovejo - Hora: 6:00 pm.*

3.4. Presupuesto de Instalación del Sistema Fotovoltaico

El costo de instalación y operación del sistema fotovoltaico dimensionado para el Pabellón Benedicto XVI se puede apreciar de manera resumida en la Tabla 18 y 19, donde se obtuvo que el costo total de instalación es de s/. 453,568.37 siendo el costo más elevado, el de los módulos fotovoltaicos (FV) con un costo total de s/. 358,441.38. El costo de operación que corresponde al costo de mantenimiento es en total s/. 17,849.72.

Tabla 17.Costo de Instalación del Sistema Fotovoltaico en el Pabellón Benedicto XVI

Costes de Instalación				
Descripción	Cantidad	Precio Unitario		Total
Módulos FV			s/.	358,441.38
JAM78-S30-600-MR	240	1, 236.9	s/.	296,661.53
Soportes para módulos	240	257.42	s/.	61,779.85
Inversores			s/.	82,409.90
CSI-66KTL-GS	2	41,204.95	s/.	82,409.90
Otros Componentes			s/.	2,420.45
Accesorios, sujetadores	1	1,339.30	s/.	1,339.30
Cableado	2	522.19	s/.	1,044.37
Caja de conexiones	1	36.77	s/.	36.77
Estudios y análisis			s/.	9,193.43
Ingeniería	1	9,193.43	s/.	9,193.43
Instalación			s/.	1,103.21
Transporte	1	1,103.21	s/.	1,103.21
Costo Total de Instalaci	ón		s/.	453,568.37

Tabla 18.
Costo de Operación del Sistema Fotovoltaico en el Pabellón Benedicto XVI

Costos de Operación		
Descripción		Costo Anual
Mantenimiento	s/.	17,849.72
Provisión para reemplazo del inversor	s/.	16,481.98
Salarios	s/.	800.008
Reparaciones	s/.	367.74
Limpieza	s/.	200.00
Costo Total de operación	s/.	17,849.72

El resumen financiero se puede apreciar en la Tabla 20. Al igual que el retorno de la inversión, el costo anual de la instalación es de s/.42,587.25 y el costo de instalación total

es de s/. 453,568.37, la cual se recupera en 2.6 años con una tasa interna de retorno (TIR) de 37.22 % y un valor Actual Neto (VAR) de s/. 3,266,518.

Tabla 19.Resumen financiero y Retorno de la inversión del sistema fotovoltaico en el Pabellón Benedicto XVI

Resumen Financiero		
Costes de instalación	s/.	453,568.37
Costo total anual	s/.	42,587.25
Retorno de la inversión		
Valor Actual Neto (VAR)	s/.	3,266,518
Tasa Interna de Retorno (TIR)		37.22 %
Período de recuperación		2.6 años

En la Figura 65 y 66 se aprecia la ganancia monetaria por año que aporta s/el sistema fotovoltaico del pabellón Benedicto XVI a lo largo de su vida útil. En el primer año se observa una pérdida de aproximadamente s/. 450,000 y a partir del segundo año existe una ganancia de s/. 180,000, la cual va disminuyendo con el paso de los años debido al costo operacional (mantenimiento), llegando al último año con una ganancia de s/. 100,000. Sin embargo, en la gráfica de la Figura 66. se observa que no hay ganancia hasta casi el tercer año, debido que recién se está recuperando el monto que se invirtió en la instalación del sistema, al término de los 25 años de vida útil del SF se ha logrado acumular un total de s/. 3,266,518.

Figura 65.Flujo de caja anual del SF dimensionado en el Pabellón Benedicto XVI

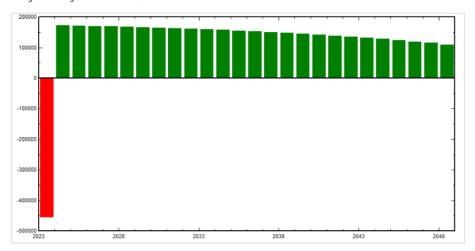
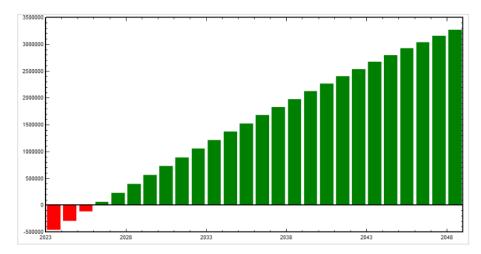



Figura 66.

Flujo de caja acumulativo del SF dimensionado en el Pabellón Benedicto XVI

El costo de instalación y operación del sistema fotovoltaico dimensionado para el Pabellón Santo Toribio de Mogrovejo se puede apreciar de manera resumida en la Tabla 21 y 22, donde se obtuvo que el costo total de instalación es de s/. 772,018.12 siendo el costo más elevado, el de los módulos fotovoltaicos (FV) con un costo total de s/. 627,000. El costo de operación que corresponde al costo de mantenimiento es en total s/. 28,772.97, siendo el costo más elevado el de estudios y análisis con s/. 9,500.

Tabla 20.Costo de Instalación del Sistema Fotovoltaico en el Pabellón Santo Toribio de Mogrovejo

Costes de Instalación				
Descripción	Cantidad	Precio Unitario		Total
Módulos FV			s/.	627,000.00
JAM78-S30-605-MR	330	1,400	s/.	462,000.00
Soportes para módulos	330	500	s/.	165,000.00
Inversores			s/.	123,614.85
CSI-66KTL-GS	2	41,204.95	s/.	123,614.85
Otros Componentes			s/.	8,903.27
Accesorios, sujetadores	1	6,000	s/.	6,000.00
Cableado	3	522.19	s/.	1,566.57
Caja de conexiones	1	36.70	s/.	36.77
Contador Bidireccional	1	1,300	s/.	1,300.00
Estudios y análisis			s/.	9,500.00

Costes de Instalaci	ón			
Descripción	Cantidad	Precio Unitario		Total
Ingeniería	1	9,500	s/.	9,500.00
Instalación			s/.	3,000.00
Transporte	1	3,000	s/.	3,000.00
Costo Total de Inst	alación		s/.	772,018.12

Tabla 21.Costo de Operación del Sistema Fotovoltaico en el Pabellón Santo Toribio de Mogrovejo

Costos de Operación		
Descripción		Costo Anual
Mantenimiento	s/.	28,772.97
Provisión para reemplazo del inversor	s/.	24,722.97
Salarios	s/.	800.00
Reparaciones	s/.	3,000.00
Limpieza	s/.	250.00
Costo Total de operación	s/.	28,772.97

El resumen financiero se puede apreciar en la Tabla 22. Al igual que el retorno de la inversión, el costo anual de la instalación es de s/.68,648.79 y el costo de instalación total es de s/. 772,018.12, la cual se recupera en 3.2 años con una tasa interna de retorno (TIR) de 30.17 % y un valor Actual Neto (VAR) de s/. 7,287,048.

Tabla 22.Resumen financiero y Retorno de la inversión del sistema fotovoltaico en el Pabellón Santo Toribio de Mogrovejo

Resumen Financiero		
Costes de instalación	s/.	772,018.12
Costo total anual	s/.	68,648.79
Retorno de la inversión		
Valor Actual Neto (VAR)	s/.	4,287,034
Tasa Interna de Retorno (TIR)		30.17 %
Período de recuperación		3.2 años

En la Figura 67 y 68 se aprecia la ganancia monetaria por año que aporta el sistema fotovoltaico del Pabellón Santo Toribio de Mogrovejo a lo largo de su vida útil. En el primer año se observa una pérdida de aproximadamente s/. 800,000 y a partir del segundo año existe una ganancia de s/. 230,000, la cual va disminuyendo con el paso de los años

debido al costo operacional (mantenimiento), llegando al último año con una ganancia de s/. 100,000. Sin embargo, en la gráfica de la Figura 68. se observa que no hay ganancia hasta el cuarto año, debido que recién se está recuperando el monto que se invirtió en la instalación del sistema, al término de los 25 años de vida útil del SF se ha logrado acumular un total de s/. 4,287,034.

Figura 67. Flujo de caja anual (KPEN) del SF dimensionado en el Pabellón Santo Toribio de Mogrovejo

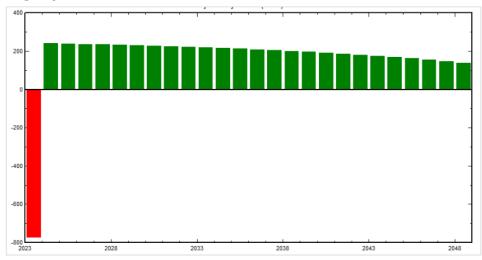
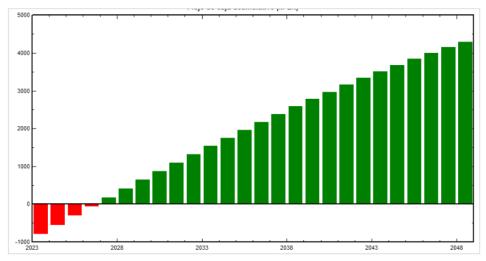



Figura 70.

Flujo de caja acumulativo (KPEN) del SF dimensionado en el Pabellón Santo Toribio de Mogrovejo

IV. DISCUSIÓN

La división por áreas o ambientes en la universidad, permitió obtener datos exactos de los elementos eléctricos que se usan y la cantidad de uso diario por ambiente, permitiendo brindar un factor de simultaneidad de acuerdo a la actividad académica de cada área; gracias a la metodología empleada se pudo obtener el consumo energético por pabellón tanto en un mes como para un año. Esta metodología aplicada es similar a la de algunos trabajos de investigación donde también separan el consumo energético de la universidad en ambientes o áreas, teniendo en cuenta los equipos que se usan y las horas de uso (Haseeb et al., 2022; Li et al., 2017; Ocampo Batlle et al., 2020). Por otro lado, algunas investigaciones utilizan los datos de consumo energético mensual a través de sus recibos, donde ya no necesitan elaborar un consumo energético detallado (Chavarría-Solera et al., 2016; Hermosilla, 2014).

La huella de carbono de la UCT se calculó teniendo en cuenta el consumo energético de la universidad y el factor de emisión oficial CO₂ – MINAM, que es de 0.1733 Kg CO₂/KWh, este factor varía de acuerdo al país y año donde se realiza el estudio; en otras investigaciones el factor de emisión por consumo energético es mayor, como en las investigaciones que se llevaron a cabo en las universidades de Pakistán, donde el factor energético es de 0.617 Kg CO₂/KWh (Haseeb et al., 2022); por otro lado, la Universidad Católica de Trujillo tiene una huella de carbono de Alcance 2, menor a otras universidades, como es con en el caso de la Universidad de Pertamina que tiene una HC de 1 247.8 MTCO₂ (Ridhosari & Rahman, 2020) o la Universidad de Nacional de Costa Rica con 970 T CO₂ (Chavarría-Solera et al., 2016). Estas diferencias tan grandes se deben a la cantidad de edificios y tamaño de área en la que se calcula al huella de carbono, en el caso de la Universidad Católica de Trujillo, solo fueron de dos pabellones y un total de aproximadamente 1 600 m²; en cambio en las universidades mencionadas anteriormente el cálculo es de más de 1 campus y cada uno con 7 a 8 edificios.

El dimensionamiento del sistema fotovoltaico elaborado mediante la teledetección solar facilito el análisis y obtención de datos (parámetros solares y geoespaciales), logrando así la obtención de un sistema fotovoltaico específico para la Universidad Católica de Trujillo, con datos robustos y precisos, como la irradiación, orientación, azimut, radiación, horas solar pico, temperatura, etc., datos que permiten aprovechar al máximo la radiación solar por espacio geográfico. Esta técnica aplicada también se ha empleado para el estudio,

diseño e implementación de sistemas fotovoltaicos en otras investigaciones, logrando una mejor robustez en el dimensionamiento del sistema fotovoltaico (Barrera et al., 2021; Jiang et al., 2022; Mellit & Kalogirou, 2021). Por otro lado, existen investigaciones que también han diseñado un sistema fotovoltaico utilizando datos de radiación solar de una base de datos, sin embargo, los datos como el número de paneles, la potencia solar pico, temperatura, etc. los obtuvieron del empleo de fórmulas matemáticas, logrando también un diseño fotovoltaico eficaz (Al-Najideen & Alrwashdeh, 2017; Ladrón de Guevara, 2018).

Los sistemas fotovoltaicos diseñados para los pabellones Benedicto XVI y Santo Toribio de Mogrovejo, tienen una inversión muy alta, destacando mayormente el gasto en las compras de los módulos FV; sin embargo, para ambos sistemas su recuperación es menor a cuatro años, con una ganancia final por parte de ambos SF de más de s/. 5,000,000. En otros estudios donde evalúan la parte económica y la rentabilidad de la implementación de sistemas fotovoltaicos, también se obtuvieron resultados óptimos, donde la inversión por implementación es muy elevada, pero es una inversión a futuro, que con el paso de los años genera ingresos y ahorro de emisión de CO₂ (Mitjans & Pulfer, 2019; Rodríguez & Gutiérrez, 2017), como es en el caso de la Universidad de Jordania donde la implementación del SF se recupera en 3 años con un TIR del 32% (Ayadi et al., 2018) o la Facultad de Ingeniería de la Universidad de Mu 'tah, que logra recuperar lo invertido en 5.5 años, mitigando 85 T CO₂ al año (Al-Najideen & Alrwashdeh, 2017).

V. CONCLUSIONES

El dimensionamiento de un sistema fotovoltaico a través de teledetección solar influye de manera significativa en la HC por consumo de energía eléctrica en la Universidad Católica de Trujillo, ya que permite el ahorro total de 3 862.9 T CO₂ a lo largo de la vida útil de los sistemas fotovoltaicos dimensionados en ambos pabellones, contribuyendo con la disminución de los GEI y la mitigación del cambio climático.

El consumo energético total de los pabellones principales en el campus de Moche de la Universidad Católica de Trujillo es de 67 453 KWh/mes y 809 MWh/año, teniendo el Pabellón Benedicto XVI un consumo de energía de 272 MWh/año y el Pabellón Santo Toribio de Mogrovejo un consumo de energía de 537 MWh/año. Los ambientes que tienen un mayor consumo energético en ambos pabellones son: Los salones de clase, oficinas administrativas, iluminación y laboratorios.

La huella de carbono de Alcance 2 en los pabellones principales en el campus de Moche de la Universidad Católica de Trujillo es de 141.21 T CO₂ al año, siendo el Pabellón Santo Toribio de Mogrovejo el que tiene la mayor huella de carbono con 93.95 T CO₂ al año que representa el 66.53 % del total y el Pabellón Benedicto XVI tiene una huella de 47.26 T CO₂ al año, representando el 33.47 % del total, ambos pabellones tienen una huella de carbono por consumo energético significativo.

La obtención de datos solares (irradiación, radiación, temperatura, hora solar pico, inclinación, etc.) y geoespaciales (latitud, longitud, área de dimensionamiento, etc.) a través de la técnica de la teledetección solar facilito y brindo una mayor precisión en el dimensionamiento de los sistemas fotovoltaicos, aprovechando al máximo el espacio geográfico, las condiciones ambientales y la radiación presente en la Universidad Católica de Trujillo. El sistema fotovoltaico conectado a red para el pabellón Benedicto XVI está compuesto principalmente de 240 módulos fotovoltaicos JAM78 de 600 W y 2 inversores CSI de 66 KW ocupando un área de 699 m², generando una potencia de 276 MWh al año con un rendimiento del 85.7 %, este sistema logra satisfacer la demanda del Pabellón Benedicto XVI que es de 272 MWh al año. Así mismo, el sistema fotovoltaico conectado a red dimensionado para el Pabellón Santo Toribio de Mogrovejo está compuesto principalmente de 330 módulos fotovoltaicos JAM78 de 605 W y 3 inversores CSI de 66

KW ocupando un área de 922 m², generando una potencia de 390 MWh al año con un rendimiento del 87.6 %, este sistema logra satisfacer la demanda del Pabellón Santo Toribio de Mogrovejo que es de 367 MWh al año, dejando de lado el área de Tecnología de la Información.

El costo total por la instalación de ambos sistemas es de s/. 1,225,586.49 y el costo de operación es de s/. 46,622.69. Del costo de instalación total, s/. 453,568.37 corresponden al Pabellón Benedicto XVI, esta inversión se logra recuperar en 2.6 años con un Valor Actual Neto de s/. 3,266,518 al cabo de la vida útil del sistema y un TIR de 37.22 %; por otro lado, s/. 772,018.12 corresponde al Pabellón Santo Toribio de Mogrovejo, recuperándose en 3.2 años con un Valor Actual Neto de s/. 4,287,034 y un TIR de 30.17 %.

VI. RECOMENDACIONES

Para futuros estudios sobre dimensionamiento de sistemas fotovoltaicos en los pabellones que están actualmente en construcción, se recomienda solicitar los recibos de luz de un año anterior, para facilitar y lograr una mayor rapidez del estudio.

Se recomienda la renovación de algunos equipos que consumen altas cantidades de energía eléctrica en los pabellones principales de la Universidad Católica de Trujillo.

Para la elaboración de un estudio más completo de la huella de carbono en la Universidad Católica de Trujillo, se recomienda calcular la huella de carbono de Alcance 1 y Alcance 3, esto permitirá estimar cuan representativa es la huella por consumo energético en la UCT.

En el caso que se cuente con apoyo financiero o recursos económicos se podría comprar una base de datos de satélites o sensores remotos que cuenten con una resolución espacial mayor o una resolución temporal del año en el que se quiere realizar el estudio.

La teledetección es una técnica que facilita el recojo de datos y mapeo de determinados espacios geográficos, por lo que, es importante su aplicación y aprendizaje en estudiantes de nivel superior.

VII. REFERENCIAS BIBLIOGRÁFICAS

- Al-Najideen, M. I., y Alrwashdeh, S. S. (2017). Design of a solar photovoltaic system to cover the electricity demand for the faculty of Engineering- Mu'tah University in Jordan. *Resource-Efficient Technologies*, *3*(4), 440–445. https://doi.org/10.1016/j.reffit.2017.04.005
- Andrés Blanco, T. (2019). ¿Qué es y cómo calcular la potencia eléctrica? BBVA Communications. https://www.bbva.com/es/sostenibilidad/que-es-y-como-calcular-la-potencia-electrica/
- Autor Solar Inc. (2020). *Medidor bidireccional CFE ¿Qué es? Y ¿Cómo funciona?* Autor Solar Inc. https://www.energiasolarinc.com/medidor-bidireccional-cfe/
- AutoSolar. (2023). Inversores Solares. AutoSolar. https://autosolar.pe/inversores-solares
- Ayadi, O., Al-Assad, R., y Al Asfar, J. (2018). Techno-economic assessment of a grid connected photovoltaic system for the University of Jordan. *Sustainable Cities and Society*. https://doi.org/10.1016/j.scs.2018.02.011
- Barreda, M., y Polo, J. (n.d.). Evaluación de la huella de carbono en una institución educativa de nivel superior . Estudio de caso. *Universidad Católica San Pablo*.
- Barrera, N. A. G., González, D. C. P., Mesa, F., y Aristizábal, A. J. (2021). Procedure for the practical and economic integration of solar PV energy in the city of Bogotá. *Energy Reports*, 7(May), 163–180. https://doi.org/10.1016/j.egyr.2021.08.091
- BBVA Communications. (2022). ¿Qué es el combustible fósil? La energía que se obtiene de la materia orgánica. BBVA. https://www.bbva.com/es/sostenibilidad/que-es-el-combustible-fosil-la-energia-que-se-obtiene-de-la-materia-organica/
- Cepeda, J., y Sierra, A. (2007). Aspectos que afectan la eficiencia en los paneles fotovoltaicos y sus potenciales soluciones. NAFA SCR Document, 17.
- Charles K., A., y Matthew N., S. (2013). Fundamentos de Circuitos Eléctricos (E. Zúñiga (ed.); 5a ed.).
- Chavarría-Solera, F., Molina-León, Ó. M., Gamboa-Venegas, R., yy Rodríguez-Flores, J. (2016). Medición de la huella de carbono de la Universidad Nacional de Costa Rica

- para el periodo 2012-2014. Rumbo a la carbono neutralidad. *Uniciencia*, 30(2), 47. https://doi.org/10.15359/ru.30-2.4
- Chuvieco, E. (1995). Fundamentos de teledetection espacial (Rialp S.A.).
- Clabeaux, R., Carbajales-Dale, M., Ladner, D., y Walker, T. (2020). Assessing the carbon footprint of a university campus using a life cycle assessment approach. *Journal of Cleaner Production*, 273, 122600. https://doi.org/10.1016/j.jclepro.2020.122600
- Climate Partner ID. (2019). *Emisiones De Alcance 1, 2 Y 3*. Climate Partner ID. https://www.climatepartner.com/es/guia-completa-para-entender-las-emisiones-de-alcance-1-2-y-3#explicacin-del-alcance-1-2-y-3
- Cooper, J., Bird, M., Acha, S., Amrit, P., y Chachuat, B. (2023). ScienceDirect The Carbon Footprint of a UK Chemical Engineering Department The Case of Imperial College London. *Procedia CIRP*, *116*, 444–449.
- Coruhlu, Y. E., Solgun, N., Baser, V., y Terzi, F. (2022). Revealing the solar energy potential by integration of GIS and AHP in order to compare decisions of the land use on the environmental plans. *Land Use Policy*, 113. https://doi.org/10.1016/j.landusepol.2021.105899
- ENGIE. (15 de febrero del 2021). Edificio Corporativo de ENGIE en el Perú alcanza la carbono neutralidad. *RevistaEnergia*. https://revistaenergia.pe/edificio-corporativo-de-engie-en-el-peru-alcanza-la-carbono-neutralidad/
- Filimonau, V., Archer, D., Bellamy, L., Smith, N., y Wintrip, R. (2021). Science of the total environment the carbon footprint of a UK University during the COVID-19 lockdown. *Science of the Total Environment*, 756. https://doi.org/10.1016/j.scitotenv.2020.143964
- Gbadamosi, S. L., Ogunje, F. S., Wara, S. T., y Nwulu, N. I. (2022). Techno-Economic Evaluation of a Hybrid Energy System for an Educational Institution: A Case Study. *Energies*, 15(15). https://doi.org/10.3390/en15155606
- Gomez Baggethun, E. (2021). Limits: Why Malthus was Wrong and Why Environmentalists Should Care. *Ecological Economics*, 182. https://doi.org/10.4103/cs.cs_19_145

- Gu, Y., Wang, H., Xu, J., Wang, Y., Wang, X., Robinson, Z. P., Li, F., Wu, J., Tan, J., y Zhi, X. (2019). Quantification of interlinked environmental footprints on a sustainable university campus: A nexus analysis perspective. *Applied Energy*, 246(March), 65– 76. https://doi.org/10.1016/j.apenergy.2019.04.015
- Hamieh, A., Rowaihy, F., Al-juaied, M., Abo-khatwa, A. N., Afifi, A. M., y Hoteit, H. (2022). Quantification and analysis of CO 2 footprint from industrial facilities in Saudi Arabia. *Energy Conversion and Management: X*, 16. https://doi.org/10.1016/j.ecmx.2022.100299
- Handara, V. A., Illya, G., Tippabhotla, S. K., Shivakumar, R., y Budiman, A. S. (2016).
 Center for Solar Photovoltaics (CPV) at Surya University: Novel and Innovative Solar Photovoltaics System Designs for Tropical and Near-Ocean Regions (An Overview and Research Directions). *Procedia Engineering*, 139, 22–31.
 https://doi.org/10.1016/j.proeng.2015.09.211
- Hasapis, D., Savvakis, N., Tsoutsos, T., Kalaitzakis, K., Psychis, S., y Nikolaidis, N. P. (2017). Design of large scale prosuming in Universities: The solar energy vision of the TUC campus. *Energy and Buildings*. https://doi.org/10.1016/j.enbuild.2017.01.074
- Haseeb, M., Tahir, Z., Batool, S. A., Majeed, A., Ahmad, S. R., y Kanwal, S. (2022). The carbon footprint of a public sector University before and during the COVID-19 lockdown. *Global NEST*, 24(1), 29–36.
- Hermosilla, A. (2014). Huella de Carbono en la Universidad Politécnica de Cartagena: En Busca de la Ecoeficiencia [Universidad Politécnica de Cartagena, Tesis de maestría]. http://repositorio.upct.es/bitstream/handle/10317/5043/tfm384.pdf?sequence=1&isAll owed=y
- HESA. (2023). *Datos del proveedor HE: Gestión de patrimonios*. Higher Education Statistics Agency [HESA]. https://www.hesa.ac.uk/data-and-analysis/estates/environmental
- Hong, W. Y., y Rahmat, B. N. N. N. (2022). Energy consumption, CO2 emissions and electricity costs of lighting for commercial buildings in Southeast Asia. *Scientific*

- Reports, 1-11. https://doi.org/10.1038/s41598-022-18003-3
- IEC international Standars. (2016). Electrical Installation Guide. In *Schneider Electric S.A.* (Laurent MI).
- Irwin, J. D. (1997). Analisis Básico de Circuitos en Ingenieria (5a ed.).
 https://circuitoselectricosi.files.wordpress.com/2015/07/analisis-basico-de-circuitos-ingenieria-5ta-edicion-irwin.pdf
- Jiang, H., Yao, L., Lu, N., Qin, J., Liu, T., Liu, Y., & Zhou, C. (2022). Geospatial assessment of rooftop solar photovoltaic potential using multi-source remote sensing data. *Energy and AI*, 10. https://doi.org/10.1016/j.egyai.2022.100185
- Kanat, O., Yan, Z., Asghar, M. M., Ahmed, Z., Mahmood, H., Kirikkaleli, D., y Murshed, M. (2021). Do natural gas, oil, and coal consumption ameliorate environmental quality? Empirical evidence from Russia. *Environmental Science and Pollution Research*, 29(3), 4540–4556. https://doi.org/10.1007/s11356-021-15989-7
- Khan, I., Zakari, A., Zhang, J., Dagar, V., y Singh, S. (2022). A study of trilemma energy balance, clean energy transitions, and economic expansion in the midst of environmental sustainability: New insights from three trilemma leadership. *Energy*, 248. https://doi.org/https://doi.org/10.1016/j.energy.2022.123619.
- Kiehle, J., Kopsakangas-Savolainen, M., Hilli, M., y Pongrácz, E. (2023). Carbon footprint at institutions of higher education: The case of the University of Oulu. *Journal of Environmental Management*, 329(May 2022). https://doi.org/10.1016/j.jenvman.2022.117056
- Ladrón de Guevara, J. A. (2018). Diseño y Cálculo de una Instalcion Fotovoltaica Aislada [Universidad Politecnica de Madrid, Tesis de Pre grado]. http://oa.upm.es/52204/1/PFC_JORGE_ALVARADO_LADRON_DE_GUEVARA.p df
- Li, L., Tong, Z., Linhua, Z., y Hongchang, S. (2017). Energy Consumption Investigation and Data Analysis for one university of Guangzhou. *Procedia Engineering*, 205, 2118–2125. https://doi.org/10.1016/j.proeng.2017.10.135
- Linares-Vizcarra, M. L. del C., Montero Zuñiga, E. T., y Mendoza Aranzamendi, J. A.

- (2022). La energía solar y sus beneficios en la Universidad Nacional Jorge Basadre Grohmann en Tacna, Perú. *Ciencia Latina Revista Científica Multidisciplinar*, *6*(6), 7161–7174. https://doi.org/10.37811/cl_rcm.v6i6.3939
- Lira Oliver, A., y Guevara Mon, A. B. (2018). Irradiancia y Radiancia. In *Práctica N°15*. http://leias.fa.unam.mx/wp-content/uploads/2018/07/180515_Practica15_LES.pdf
- Ma, B., Bashir, M. F., Peng, X., Strielkowski, W., y Kirikkaleli, D. (2023). Analyzing research trends of universities' carbon footprint: An integrated review. *Gondwana Research*, 121, 259–275. https://doi.org/10.1016/j.gr.2023.05.008
- Mellit, A., y Kalogirou, S. (2021). Artificial intelligence and internet of things to improve efficacy of diagnosis and remote sensing of solar photovoltaic systems: Challenges, recommendations and future directions. *Renewable and Sustainable Energy Reviews*, 143(February). https://doi.org/10.1016/j.rser.2021.110889
- Merino, M., Reyes, S., Rojas, L., Salgado, E., y Torres, E. (2017). Diseño e implementación de un módulo de carga para celulares por medio de paneles solares en la universidad de Piura [Universidad Nacional de Piura, Tesis de Pre grado]. https://pirhua.udep.edu.pe/bitstream/handle/11042/3219/PYT_Informe_Final_Proyect o_USolar.pdf?sequence=1%0Ahttp://perio.unlp.edu.ar/ojs/index.php/apuntesFPyCS%7Chttp://orcid.org/0000-0003-4477-9768
- Ministerio del Ambiente [MINAM]. (2018). *Huella De Carbono Perú*. Huella de Carbono. https://huellacarbonoperu.minam.gob.pe/huellaperu/#/inicio
- Mitjans, F., y Pulfer, J. (2019). Efecto del uso del alumbrado público a energía solar y de luminarias tipo led a nivel residencial sobre el sistema iterconectado nacional paraguayo y su rentabilidad. *ResearchGate*.
- Mughal, N., Arif, A., Jain, V., Chupradit, S., Shabbir, M. S., Ramos, C. S., y Zhanbayev, R. (2022). The role of technological innovation in environmental pollution, energy consumption and sustainable economic growth: Evidence from South Asian economies. *Energy Strategy Reviews*, 39, 100745. https://doi.org/10.1016/j.esr.2021.100745
- Ocampo Batlle, E. A., Escobar Palacio, J. C., Silva Lora, E. E., Martínez Reyes, A. M., Melian Moreno, M., y Morejón, M. B. (2020). A methodology to estimate baseline

- energy use and quantify savings in electrical energy consumption in higher education institution buildings: Case study, Federal University of Itajubá (UNIFEI). *Journal of Cleaner Production*, 244. https://doi.org/10.1016/j.jclepro.2019.118551
- Ordóñez Rosales, P. D. (2020). Diseño e implementación de sistemas fotovoltaicos en locales comunales, como respaldo energético, ante el corte del suministro eléctrico, provincia de Huarochirí [Universidad Nacional Agraria La Molina, Tesis de Pre grado].

 https://repositorio.lamolina.edu.pe/bitstream/handle/20.500.12996/4709/ordonez-
- Pareja Aparicio, M. (2015). Energía solar fotovoltaica: cálculo de una instalación aisalada (3ª ed.). Marcombo.
- Parreño, J., Lara, O., Jumbo, R., Caicedo, H., y Sarzosa, D. (2020). Diseño de un módulo de energía solar como estrategia de ahorro energético y disminución de la emisión de CO2. *Revista Científica A.S.A.*, 2, 4–18.
- Pepeenergy, E. B. de. (2023). ¿Qué es la potencia máxima? El Blog de Pepeenergy. https://www.pepeenergy.com/blog/glosario/definicion-potencia-maxima/
- Perpiñan Lamigueiro, O. (2020). *Energía Solar Fotovoltaica*. http://procomun.wordpress.com/documentos/libroesf

rosales-paul-dario.pdf?sequence=1&isAllowed=y

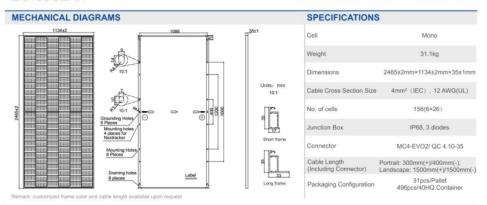
- Rao, V. T., y Sekhar, Y. R. (2022). Comparative analysis on embodied energy and CO 2 emissions for stand-alone crystalline silicon photovoltaic thermal (PVT) systems for tropical climatic regions of India. Sustainable Cities and Society, 78. https://doi.org/10.1016/j.scs.2021.103650
- Rasheed, M. Q., Haseeb, A., Adebayo, T. S., Ahmed, Z., y Ahmad, M. (2022). The long-run relationship between energy consumption, oil prices, and carbon dioxide emissions in European countries. *Environmental Science and Pollution Research*, 29(16), 24234–24247. https://doi.org/10.1007/s11356-021-17601-4
- Ridhosari, B., y Rahman, A. (2020). Carbon footprint assessment at Universitas Pertamina from the scope of electricity, transportation, and waste generation: Toward a green campus and promotion of environmental sustainability. *Journal of Cleaner Production*, 246, 119172. https://doi.org/10.1016/j.jclepro.2019.119172

- Robinson, O., Kemp, S., y Williams, I. (2015). Carbon management at universities: A reality check. *Journal of Cleaner Production*, *106*(2015), 109–118. https://doi.org/10.1016/j.jclepro.2014.06.095
- Rocha, T. de A., Silva, L. B., Alves, E. B. B. M., y Jacovine, L. A. G. (2023). Carbon footprint in an educational institution and compensation potential in urban forests. *Environmental Development*, 46. https://doi.org/10.1016/j.envdev.2023.100860
- Rodríguez, A. M., y Gutiérrez, F. (2017). Reducción de la huella de carbono por medio de la implementación de un sistema fotovoltaico en el sector hotelero. caso de estudio anaira hostel (Leticia-Amazonas Colombia). *Revista de Tecnología*, *16*(1), 169–182. https://dialnet.unirioja.es/servlet/articulo?codigo=6546154
- Rodriguez Mas, F., Ruiz Gómez, A., y Valiente García, D. (2022). *Apuntes sobre la energía fotovoltaica*. Universidad Miguel Hernández.
- Sharma, R., Shahbaz, M., Kautish, P., y Vo, X. V. (2021). Does energy consumption reinforce environmental pollution? Evidence from emerging Asian economies. *Journal of Environmental Management*, 297, 1–11. https://doi.org/10.1016/j.jenvman.2021.113272
- Shwalb Helguero, M., Molina Ruzicanin, A., y Torres Jáuregui, S. (2016). *Reporte de Sostenibilidad 2014-2015*.
- Suxe Fernández, J. M. (2022). *Diseño de una planta solar de 100 kw conectado a la red mediante el software PVSYST 7 . 2 en el distrito de Oyotún Chiclayo Lambayeque Perú* [Universidad Nacional Mayor de San Marcos, Tesis de Pre grado]. https://cybertesis.unmsm.edu.pe/bitstream/handle/20.500.12672/19710/Suxe_fj.pdf?se quence=1&isAllowed=y
- Ulloa, B., y Samaniego, O. (2021). Reducción de la huella de carbono por medio de la implementación de un sistema fotovoltaico en el edificio de posgrados y CIITT de la UCACUE [Universidad Católica de Cuenca, Tesis de Pre grado].. https://dspace.ucacue.edu.ec/handle/ucacue/7954
- Universidad Cientifica del Sur. (2019). *Reporte de Huella de Carbono Corporativa*. https://huellacarbonoperu.minam.gob.pe/huellaperu/#/listadoInscritos/99

- Universidad Continental. (2 de enero del 2023). UC es la primera universidad en la macrorregión centro en implementar sistemas de energía solar para su autoconsumo. *Noticias UC*.
 - https://ucontinental.edu.pe/noticias/uc-es-la-primera-universidad-en-la-macrorregion-centro-en-implementar-sistemas-de-energia-solar-para-su-autoconsumo/#:~:text=UC es la primera universidad,energía solar para su autoconsumo&text=minutos de lectura-,Inici
- Universidad de Lima. (21 de abril del 2021). Universidad de Lima implementa sistemas de energía solar para su autoconsumo. RevistaEnegia.

 https://www.ulima.edu.pe/ulima/noticias/universidad-de-lima-implementa-sistemas-de-energia-solar-para-su-autoconsumo#:~:text=Para la Universidad de Lima,de su huella de carbono.
- Universidad Nacional Agraria La Molina. (2020). Reporte de huella de carbono organizacional.
 - https://huellacarbonoperu.minam.gob.pe/huellaperu/#/listadoInscritos/99
- Universidad Nacional de San Agustín de Arequipa. (25 de abril del 2023). UNSA es la primera universidad del sur en utilizar energías limpias en edificaciones. *Oficina Universitaria de Imagen Institucional*. https://www.unsa.edu.pe/unsa-es-la-primera-universidad-del-sur-en-utilizar-energias-limpias-en-edificaciones/
- Universidad San Ignacio de Loyola. (2021). *Reporte de huella de carbono organizacional*. https://huellacarbonoperu.minam.gob.pe/huellaperu/#/listadoInscritos/99
- Universidad Tecnologica del Perú. (2022). *Reporte de huella de carbono organizacional*. https://huellacarbonoperu.minam.gob.pe/huellaperu/#/listadoInscritos/99
- University of Cambridge. (2022). Environmental Sustainability Report 2020-21. https://www.environment.admin.cam.ac.uk/files/environmental_sustainability_report_ 2020-21.pdf
- Yadav, S., Panda, S. K., y Hachem-Vermette, C. (2020). Optimum azimuth and inclination angle of BIPV panel owing to different factors influencing the shadow of adjacent building. *Renewable Energy*, 162, 381–396. https://doi.org/10.1016/j.renene.2020.08.018

- Yue, H., Worrell, E., Crijns-Graus, W., y Zhang, S. (2021). The potential of industrial electricity savings to reduce air pollution from coal-fired power generation in China. *Journal of Cleaner Production*, 301, 1–18. https://doi.org/10.1016/j.jclepro.2021.126978
- Zarco, P. J., Ariza, F., y López, R. (1996). Métodos de obtención de la radiación solar mediante teledetección: órbita polar vs órbita geoestacionaria. *Espacio y Desarrollo*, 8, 33–73.


ANEXOS

Anexo 1: Instrumentos de recolección de la información

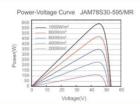
Ficha Técnica del panel solar

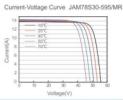
JA SOLAR

JAM78S30 580-605/MR Sories

LECTO	LCAL	DADA	METE	DC AT	CTC

ELECTRICAL PARAMETERS A	AT STC					
TYPE	JAM78S30 -580/MR	JAM78S30 -585/MR	JAM78S30 -590/MR	JAM78S30 -595/MR	JAM78S30 -600/MR	JAM78S30 -605/MR
Rated Maximum Power(Pmax) [W]	580	585	590	595	600	605
Open Circuit Voltage(Voc) [V]	53.11	53.20	53.30	53.40	53.50	53.61
Maximum Power Voltage(Vmp) [V]	44.35	44.56	44.80	45.05	45.30	45.53
Short Circuit Current(Isc) [A]	13.84	13.88	13.93	13.98	14.03	14.08
Maximum Power Current(Imp) [A]	13.08	13.13	13.17	13.21	13.25	13.29
Module Efficiency [%]	20.7	20.9	21.1	21.3	21.5	21.6
Power Tolerance			0~+5W			
Temperature Coefficient of Isc(a_Isc)	+0.045%°C					
Temperature Coefficient of Voc(β_Voc)	-0.275%/°C					
Temperature Coefficient of $Pmax(\gamma_Pmp)$			-0.350%/°C			
STC		Irradiance 1000	M/m² call tamparate	DESC AND EC		


Irradiance 1000W/m², cell temperature 25°C, AM1.5G


ELECTRICAL PARA	METERS	AT NOCT	Г			
TYPE	JAM78S30 -580/MR	JAM78S30 -585/MR	JAM78S30 -590/MR	JAM78S30 -595/MR	JAM78S30 -600/MR	JAM78S30 -605/MR
Rated Max Power(Pmax) [W]	438	442	446	450	454	458
Open Circuit Voltage(Voc) [V]	50.45	50.59	50.72	50.86	51.01	51.17
Max Power Voltage(Vmp) [V]	42.55	42.69	42.82	42.94	43.07	43.21
Short Circuit Current(Isc) [A]	11.02	11.07	11.13	11.19	11.25	11.30
Max Power Current(Imp) [A]	10.30	10.36	10.42	10.48	10.54	10.60
NOCT	Irradiance 8	00W/m², amb	oient tempera	ture 20°C,wir	nd speed 1m.	s, AM1.5G

OPERATING CONDITIONS Maximum System Voltage 1000V/1500V DC Operating Temperature -40 C~+85 C Maximum Series Fuse Rating Maximum Static Load, Front* Maximum Static Load, Back* 5400Pa(112lb/ft²) 2400Pa(50lb/ft²) NOCT Safety Class Fire Performance UL Type 1

CHARACTERISTICS

Current-Voltage Curve JAM78S30-595/MR

Premium Cells, Premium Modules

Ficha Técnica del inversor solar

SYSTEM/TECHNICAL DATA MODEL NAME	CSI-50KTL-GS-FLB	CSI-50KTL-GS-B	CSI-60KTL-GS-B	CSI-66KTL-GS-B			
	CSI-SUKIL-GS-FLB	C21-20K1L-G2-B	CSI-BUKIL-GS-B	C21-00K1L-G2-B			
DC INPUT Max. PV Power	64 kW (16 kW/MPPT)	75 kW (22.5 kW/MPPT)	90 kW (22.5 kW/MPPT)	90 kW (22.5 kW/MPPT			
Max. DC Input Voltage	04 KW (10 KW/WFF1)			90 KW (22.5 KW/ NIPP I			
		1000 V _{oc} 200-850 V _{pc}					
Operating DC Input Voltage Range		200-850 V _{ec}					
Start-up DC Input Voltage/Power		200V 4					
Number of MPP Trackers		568-850 V _{nc} 526-850 V _{nc} 579-850 V _{nc}					
MPPT Voltage Range		O V _{DC}		5/9-850 V _{pc}			
Operating Current (Imp)	88 A (22 A per MPPT)	88 A (22 A per MPPT) 114 A (28.5 A per MPPT) 220 A (55 A per MPPT)					
Max. Input Current (Isc)							
Number of DC Inputs	12 (3 per MPPT)		16 (4 per MPP T)				
DC Disconnection Type	Load rated DC switch						
AC OUTPUT							
Rated AC Output Power	50 kW	50 kW	60kW	66 kW			
Max. AC Output Power	50 kW	50 kW	60 kW	66 kW			
Rated Output Voltage		480) V _{AC}				
Output Voltage Range*	422.4 - 528 V _{AC}						
Grid Connection Type		3 4	P/PE				
Nominal AC Output Current @480 Vac	60.2	A	72.2 A	79.4 A			
Rated Output Frequency		60	Hz				
Output Frequency Range*		59.5 -	60.5 Hz				
Power Factor	1 default (±0.8 adjustable)						
Current THD	< 3 %						
AC Disconnection Type	4.3 % Load rated AC switch						
SYSTEM							
Topology		Transfo	rmerless				
Max. Efficiency	98.8 %	98.8%	98.7%	98.8 %			
CEC Efficiency			4 %				
Night Consumption			1 W				
ENVIRONMENT							
Protection Degree		NEL	IA 4X				
Cooling	Natural Convection Cooling	NEN	Intelligent Redundant Cooling				
	Natural Convection Cooling	12 0E+o ± 140 0 F	/-25 °C to +60 °C				
Operating Temperature Range Storage Temperature Range			7-25°C to +60°C				
Operating Humidity			00%				
Operating Altitude			t/4000 m				
Audible Noise		<60 dB	A @ 1 m				
DISPLAY AND COMMUNICATION							
Display	LCD+LED						
Communication		Standard: RS	485 (Modbus)				
MECHANICAL DATA		2.0 4.0 4.4					
Dimensions (W / H / D)	-	24.8 x 40.7 x 13.9 in /	630 x 1034 x 354 mm				
Weight	165 lb / 74.8 kg		172 lb / 78 kg				
Installation Angle	90 degrees from horizontal		0-90 degrees from horizontal				
DC Inputs		15 A st	andard				
SAFETY							
Safety and EMC Standard	U		lo. 107.1-01, IEEE1547; FCC PART 15	5			
Grid St andard		IEEE154	7, Rule 21				

*The "Output Voltage Range" and "Output Frequency Range" may differ according to specific grid standard.

The specification and key features described in this data sheet may deviate slightly and are not guaranteed. Due to on-going innovation, research and product enhancement, Canadian Solar Inc. reserves the right to make any adjustment to the information described herein at any time without notice. Please always obtain the most recent version of the data sheet which shall be duly incorporated into the binding contract made by the parties governing all transactions related to the purchase and sale of the products described herein.

Caution: For professional use only. The installation and handling of PV equipment requires professional skills and should only be performed by qualified professionals. Please read the safety and installation instructions before using the product.

CANADIAN SOLAR (USA), INC. March 2020 | All rights reserved | Inverter Product Datasheet V3.0_J5_NA

Anexo 2: Operacionalización de variables

METODOLOGÍA	Tipo: Aplicada	Métodos: Se aplicará el Photovoltaic Geographical Información System (PVGIS) y datos de acuerdo a la ubicación geográfica, para la obtención de parámetros que permitan el	dimensionamiento de un sistema fotovoltaico. Diseño: Experimental,	cuantitativa Población y muestra: Huella de carbono de las universidades y Huella de Carbono de la UCT 59 Técnicas e instrumentos de recolección de datos: Observación, fórmulas matemáticas, datos de radiación. Métodos de análisis de investigación: Se procesarán y analizarán los statos en los softwares ArcGIS, QGIS, PVGIS 5.2, PVsyst 7.3, Madab.
DIMENSIONES	Ubicación Geográfica	Radiación solar (W/m²) Mapa de radiación solar	PVGIS 5.2 PVsyst 7.3	Sistema Fotovoltaico Capacidad Instalada (Potencia Requerida)
VARIABLES		Variable Independiente: Sistema fotovoltaico		Variable Dependiente: Huella de carbono
OBJETIVOS	Objetivo General:	Determinar la medida de la influencia de un sistema fotovoltaico dimensionado por EZ detección en la huella de carbono de la Universidad Católica de Trujillo	Objetivos Específicos:	Determinar 21 onsumo de energia de Trujillo Calcular el dióxido de c. 1 ono equivalente eléctrico en la Universidad Católica de Trujillo Proponer mediante técnicas de teledetección solar un tipo de sistema fotovoltaico conectado a red a través de parámetros geoespaciales y eléctricos. Elaborar un presupuesto económico del costo de la instalación y operación del sistema fotovoltaico.
HIPÓTESIS		Hipótesis General:	El Sistema Fotovoltaico dimensionado	por teledetección en la Universidad Católica de Trujillo influencia de manera significativa en la huella de carbono.
FORMULACIÓN DEL PROBLEMA	Problema General:	¿En qué medida el sistema fotovoltaico dimensionado por teledetección 3 influenciara en la huella de carbono de la Universidad Católica de Trujillo?		Problemas Específicos: ¿Cual es el consumo de energía eléctrica en la UCT? ¿Cual es la cantidad de dióxido de carbono equivalente eléctrico en la UCT? ¿Qué sistema fotovoltaico a través de parámetros geoespaciales y eléctricos es el más óptimo para la UCT? Cuál es el costo de instalación y operación del SF?
TÍTULO			Influencia de un sistema fo 2 voltaico	en la huella de carbono dimensionado por teledetección en una universidad en Moche-2023

"AÑO DE LA UNIDAD, LA PAZ Y EL DESARROLLO"

AUTORIZACIÓN DE USO DE INFORMACIÓN DE EMPRESA Y/O INSTITUCIÓN

Yo HESSEL SOFIA VALLE SANDOVAL, identificado con DNI 47259754 en mi calidad de COORDINADORA ACADÉMICA; del área de FACULTAD DE INGENIERIA de la institución UNIVERSIDAD CATÓLICA DE TRUJILLO con R.U.C N° 20440135171; ubicada en la ciudad de Trujillo, departamento La Libertad

OTORGO LA AUTORIZACIÓN,

Al Sr/Srta MARIA FERNANDA TANTA CASTRO Identificado con DNI Nº **43447072** de la Facultad de Ingeniería y Arquitectura dentro del programa académico de INGENIERIA AMBIENTAL para que utilice la siguiente información de la empresa:

La toma de los datos en la ejecución de la investigación de la tesis titulada: "Influencia de un Sistema Fotovoltaico en la Huella de Carbono Dimensionado por Teledetección en una Universidad en Moche - 2023"

Con la finalidad de que pueda desarrollar su () Informe estadístico, ()Trabajo de Investigación, (X)Tesis para optar el grado académico de Ingeniero.

(x) Publique los resultados de la investigación en el repositorio institucional de la UCT.

Indicar si el Representante que autoriza la información de la empresa, solicita mantener el nombre o cualquier distintivo de la empresa en reserva, marcando con una "X" la opción seleccionada.

() Mantener en reserva el nombre o cualquier distintivo de la empresa; o

(x) Mencionar el nombre de la empresa.

Firma y sello DNI: 47259754

El Estudiante declara que los datos emitidos en esta carta y en el Trabajo de Investigación, en la Tesis son auténticos. En caso de comprobarse la falsedad de datos, el Estudiante será sometido al inicio del procedimiento disciplinario correspondiente; asimismo, asumirá toda la responsabilidad ante posibles acciones legales que la empresa, otorgante de información, pueda ejecutar.

Firma del Estudiante DNI: 73447072

O Carretera Panamericana Norte Km. 555, Moche - Trujillo - Perú

108

Anexo 4: Matriz de consistencia

3 Vorighlo	Definición Concentual	Definición	Dimoneionoc	Indicadores	Instrumentes	Escala de
varianie	Dennición Conceptual	Operacional	Dimensiones	mancadores	HISTRUMENTOS	Medición
		Vai	Variable Independiente	ente		
				Potencia		Watts (W)
	20 Sistema Fotovoltaico			Amperaje	Multímetro Virtual	Amperios (A)
	concide an un conjunto de		Parámetros	Voltaje		Voltios (V)
	consiste en un conjunto de		electricos	Potencia	1 KW * área * eficiencia	
	fotovoltaico, inverso 31 C/AC,	;		fotovoltaica pico instalada	Potencia pico (KWp) = $\frac{m^2}{100}$	Cantidad
Sistema	etc.) (Ver Figura 1.) cuya funcion	El SF se dimensionara		Ubicación		Coordenadas
Fotovoltaico	eléctrica en condiciones	PVGIS.		geográfica		geográficas
	adecuadas a través de la captación de rayos solares para poder ser		Parámetros	Potencial fotovoltaico	Photovoltaic Geographical Information	KWp
	inyectados en una red eléctrica convencional (Perpiñan		geoespaciales	Temperatura	System (PVGIS)	Grados centígrados (C°)
	Lamigueiro, 2020).			Radiación solar		KWh/m ²
		Va	Variable Dependiente	nte 6		
	La Huella de Carbono es un instrumento de medición	H recultado obtenido ce	Gases de efecto	Dióxido de carbono		
84 Huella de	ambiental, el cual permite obtener	expresa en CO ₂	invernadero	equivalente eléctrico	Dorighten den de consumere officieries	Kilogramos de
Carbono	y representat et vontinen total de gases de efecto invernadero (GEI) enviados a la atmósfera (Ridhosari & Rahman, 2020)	equivaiente electrico (Ridhosari & Rahman, 2020)	Consumo de energía eléctrica	Energía eléctrica	regintatol de consumo electrico	CO ₂ equivalente

INFLUENCIA DE UN SISTEMA FOTOVOLTAICO EN LA HUELLA DE CARBONO DIMENSIONADO POR TELEDETECCIÓN EN UNA **UNIVERSIDAD EN MOCHE-2023**

INIEUBN	AE DE	OBIGIN	ALIDAD
			ALIDAD.

8

Fuente de Internet

INFORM	IE DE ORIGINALIDAD	
INDICE	3% 5% 5% 5% 5% 5% 5% 5% 5% 5% 5% 5% 5% 5%	
FUENTE	S PRIMARIAS	
1	repositorio.uct.edu.pe Fuente de Internet	2%
2	hdl.handle.net Fuente de Internet	1 %
3	Submitted to Universidad Catolica de Trujillo Trabajo del estudiante	1 %
4	Submitted to Universidad Europea de Madrid Trabajo del estudiante	1 %
5	Submitted to University of the Philippines Los Banos Trabajo del estudiante	<1%
6	repository.usta.edu.co Fuente de Internet	<1%
7	www.slideshare.net Fuente de Internet	<1%
8	www.sfe-solar.com	1 0/

9	idoc.pub Fuente de Internet	<1%
10	repositorio.upa.edu.pe Fuente de Internet	<1%
11	anes.org.mx Fuente de Internet	<1%
12	dspace.ucacue.edu.ec Fuente de Internet	<1%
13	bdigital.zamorano.edu Fuente de Internet	<1%
14	docplayer.es Fuente de Internet	<1%
15	www.iberdrola.com Fuente de Internet	<1%
16	repositorio.ucv.edu.pe Fuente de Internet	<1%
17	Submitted to Universidad Loyola Andalucia Trabajo del estudiante	<1%
18	repositorio.unas.edu.pe Fuente de Internet	<1%
19	repositorio.unu.edu.pe Fuente de Internet	<1%
20	repositorio.utn.edu.ec Fuente de Internet	<1%

21	www.ucm.edu.co Fuente de Internet	<1%
22	repositorio.unjbg.edu.pe Fuente de Internet	<1%
23	repositorio.utc.edu.ec Fuente de Internet	<1%
24	uvadoc.uva.es Fuente de Internet	<1%
25	Submitted to Universidad Carlos III de Madrid Trabajo del estudiante	<1%
26	dspace.unl.edu.ec Fuente de Internet	<1%
27	www.ucsp.edu.pe Fuente de Internet	<1%
28	Submitted to Instituto Superior Tecnológico Rumiñahui Trabajo del estudiante	<1%
29	Submitted to University of Exeter Trabajo del estudiante	<1%
30	contrataciondelestado.es Fuente de Internet	<1%
31	dspace.espol.edu.ec Fuente de Internet	<1%

pdfcoffee.com

dspace.umh.es 42 Fuente de Internet

Fuente de Internet

elrros.tripod.cl Fuente de Internet

		<1%
44	issuu.com Fuente de Internet	<1%
45	pirhua.udep.edu.pe Fuente de Internet	<1%
46	www.researchgate.net Fuente de Internet	<1%
47	addi.ehu.es Fuente de Internet	<1%
48	Submitted to University of the Andes Trabajo del estudiante	<1%
49	eprints.ucm.es Fuente de Internet	<1%
50	fundacionrenovables.org Fuente de Internet	<1%
51	nanopdf.com Fuente de Internet	<1%
52	repositorio.uan.edu.co Fuente de Internet	<1%
53	repositorio.unap.edu.pe Fuente de Internet	<1%
54	repositoriodigital.bcentral.cl Fuente de Internet	<1%

55	theibfr.com Fuente de Internet	<1%
56	www.meteogalicia.es Fuente de Internet	<1%
57	www.revistas.una.ac.cr Fuente de Internet	<1%
58	contamet.wordpress.com Fuente de Internet	<1%
59	core.ac.uk Fuente de Internet	<1%
60	ucontinental.edu.pe Fuente de Internet	<1%
61	www.ulima.edu.pe Fuente de Internet	<1%
62	WWW.un.org Fuente de Internet	<1%
63	www.archdaily.mx Fuente de Internet	<1%
64	www.ing.una.py Fuente de Internet	<1%
65	Submitted to Instituto Tecnologico de Costa Rica Trabajo del estudiante	<1%

66	Submitted to Universidad Internacional de la Rioja Trabajo del estudiante	<1%
67	Submitted to CONACYT Trabajo del estudiante	<1%
68	Submitted to Pontificia Universidad Catolica de Chile Trabajo del estudiante	<1%
69	Submitted to Universidad Continental Trabajo del estudiante	<1 %
70	prezi.com Fuente de Internet	<1%
71	revistas.uexternado.edu.co Fuente de Internet	<1%
72	Jamal Mamkhezri, Salaheddin Manochehri, Yaghob Fatemi Zardan. "Assessing economic growth-energy consumption-CO2 nexus by climate zone: international evidence", Environmental Science and Pollution Research, 2022 Publicación	<1%
73	Laura Settier Ramírez. "Envases activos portadores de microorganismos para la bioconservación de alimentos", Universitat Politecnica de Valencia, 2021 Publicación	<1%

74	coggle.it Fuente de Internet	<1%
75	doaj.org Fuente de Internet	<1%
76	dspace.utalca.cl Fuente de Internet	<1%
77	revistaenergia.pe Fuente de Internet	<1%
78	termica.uc3m.es Fuente de Internet	<1%
79	www.academicbooks.dk Fuente de Internet	<1%
80	(6-11-15) http://164.109.17.220/tripath/downloads/surepa 07085-00_Rev_B_PI_PS.pdf Fuente de Internet	<1 _% ath_ctgc
81	dehesa.unex.es:8443 Fuente de Internet	<1%
82	guia.hispavista.com.py	.1
	Fuente de Internet	<1%
83		< 1 % < 1 %

85	ouci.dntb.gov.ua Fuente de Internet	<1%
86	repositorio.unal.edu.co Fuente de Internet	<1%
87	repositorio.utp.edu.pe Fuente de Internet	<1%
88	riunet.upv.es Fuente de Internet	<1%
89	www.cacic2016.unsl.edu.ar Fuente de Internet	<1%
90	www.lutron.com Fuente de Internet	<1%
91	www.radiolibertadmundo.com Fuente de Internet	<1%
92	www.renova-energia.com Fuente de Internet	<1%
93	www.scribd.com Fuente de Internet	<1%

Excluir citas Activo
Excluir bibliografía Activo

Excluir coincidencias < 10 words